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ABSTRACT 

Multiagent systems have received much attention in recent years due to their advantages in 

complex, distributed environments.  Previous work at the Air Force Institute of Technology has developed 

a methodology for analyzing, designing, and developing multiagent systems, called Multiagent Systems 

Engineering (MaSE).  MaSE currently does not address the information domain of the system, which is an 

integral part of designing proper system execution. 

This research extends the MaSE methodology to include the use of ontologies for information 

domain specification.  The extensions allow the designer to specify information flow by using objects from 

the ontology as parameters in agent conversations.  The developer can then ensure system functionality by 

verifying that each agent has the information required to accomplish the system goals. 

To fully describe the system design, the developer must describe the relationships between the 

system ontology and any agent component ontologies.  This research also developed a ranking model to 

assist the user with creating such mappings, to show the relationships between the objects in the ontologies. 
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ONTOLOGICAL ENGINEERING AND MAPPING IN 

MULTIAGENT SYSTEMS DEVELOPMENT 

I. Introduction 

The Department of Defense is currently integrating its various distributed information systems to 

increase information superiority for the warfighter.  Joint Vision 2020 specifies the development of a global 

information grid as part of information superiority and emphasizes the importance of “information systems 

and equipment that enable a common relevant operation picture…that can be accessed by any appropriately 

cleared participant” for interoperability between the various services [Shelton 2000].  An appealing 

solution to integrating legacy systems into this global grid is the use of multiagent systems.  The resulting 

system must be robust, reliable, and secure to meet our warfighting needs. 

Constructing multiagent systems involves all the problems of traditional distributed systems along 

with the problems that arise from the behavior of the individual agents.  Designers need an engineering 

approach for system development of multiagent systems to address and avoid these problems. 

Integrating legacy systems further increases the difficulties of designing multiagent systems due to 

the varying semantics of different information systems.  Different systems can have different terms that 

represent the same concept, introducing a complication in integrating the systems.  Any complete 

methodology for building multiagent systems must address the data models used by the system and the 

individual components in the system. 

1.1 Background 

In recent years, interest in multiagent systems has increased as designers look for new methods of 

solving problems.  Growth of the Internet has led to increased distribution of information and system 

resources among multiple machines.  Agents act as abstractions for the individual components that 
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coordinate to accomplish tasks in these distributed systems.  Distributed environments lend themselves to a 

multiagent system design, so system designers have been looking for ways to use multiagent systems to 

solve their problems. 

Multiagent Systems Engineering (MaSE) has been developed at AFIT to assist in the development 

of multiagent systems by leading the designer from the initial system specifications to a set of formal 

design documents [DeLoach and others 2001].  The transformations from each step in MaSE are formally 

defined and provide the engineering approach needed for multiagent system engineering.  Despite its 

benefits in multiagent systems design, however, MaSE fails to address the design of the information 

domain.  The designer constructs a set of design documents that do not address the semantics of the data 

passed between the agents. 

This research corrects this deficiency by extending MaSE to include steps to specify the 

information domain and to use the objects defined in that domain, providing the designer with a complete 

set of design documents.  This research uses ontologies to specify the classes, properties, object constants, 

and axioms that a system and its components use to represent the domain in which they operate. 

1.1.1 Definition of an Ontology 

The word ontology was taken from philosophy where it represents the study of the nature of being.  

There has been much debate on the exact definition of an ontology when used for knowledge engineering 

or artificial intelligence.  Nicola Guarino compares the various definitions and the differences in their 

meaning in [Guarino 1996].  The most common definitions state that an ontology is a specification of a 

conceptualization [Gruber 1996] or that an ontology is the shared understanding of some domain of interest 

[Uschold 1996].  This research uses the latter definition, specifically that an ontology defines classes, 

functions, object constants, and axioms to constrain meaning of some type of world view of a given 

domain.  The ontology describes the concepts and relationships used to interact in the domain. 
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1.1.2 Importance of Ontologies in Multiagent Systems 

The specification of agent and system ontologies is important for the communication of the agents 

in the system and the future reuse of agent components.  The benefits are further explained in the following 

paragraphs. 

1.1.2.1 Communication 

Ontologies are the key for exchanging knowledge between agents.  Agent communication 

languages such as the Knowledge Query and Manipulation Language (KQML) specify the syntax used to 

communicate, but the semantics of the message actually represent the knowledge.  Without the mutual 

understanding that an ontology provides, the knowledge being passed might be misinterpreted by one of the 

agents.  This is one of the reasons presented in [Huhns 1997] for the use of ontologies in agent systems. 

1.1.2.2 Component Reuse 

Ontologies also allow for the reuse of agents.  Braga, Mattoso, and Werner argue the importance 

of ontologies in the reuse of software components [Braga and others 2001].  Ontologies specify the domain 

that the component was designed to work in and influence the connectiveness of the components of a 

software system.  Components that are designed for separate domains will not be able to directly 

communicate with each other and some type of translating component must be built.  If the initial designer 

has not specified the ontology for the component, future designers will not know if a translator is needed 

for the component to properly operate once integrated into a new software project. 

1.2 Problem 

This research focuses on the need for an engineering-based methodology for building 

heterogeneous multiagent systems.  Any complete methodology should assist the user in developing the 

structural, behavioral, and information models of the system from the initial system requirements.  This 

research provides such a methodology by extending MaSE to include development and use of information 

domain specifications. 
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1.2.1 Goals 

The main objective of this research is to develop a methodology for building heterogeneous 

systems using ontologies to specify the information domain.  This involves the creation of a methodology 

for constructing and using ontologies at the system and component level of multiagent systems. 

As alluded to in the previous section, the components of a multiagent system can have a data 

model different from the system model.  In this case, designers must specify the mapping of the classes in 

the ontologies.  An example mapping is from an Automobile object to a Car object to illustrate that the two 

objects represent the same semantic content. As the number of classes in the data models increase, the 

process of mapping every class in the component ontology becomes more tedious and difficult.  This 

research focuses on assisting the designer with this process by suggesting appropriate mappings. 

This related goal involves the construction of a ranking model to evaluate the probability that two 

classes represent the same semantic content.  This model can then rank every class in the system ontology 

based on the possibility of it matching an object from the component ontology.  This ranking suggests the 

most appropriate mapping for the component class. 

1.2.2 Approach 

To accomplish these goals, this research first determines the requirements needed by multiagent 

systems for representing and using the information domain.  MaSE is then extended to include the 

construction of ontologies for the system and components and to use the resulting ontologies throughout the 

system design.  By modifying existing methodologies, this research creates a methodology for building 

multiagent system ontologies.  Extended MaSE is used to develop a sample multiagent system to ensure the 

resulting design documents fully describe the information, behavioral, and structural domains of the 

system. 

This research develops a ranking model to compare objects using their underlying characteristics 

and attributes.  These comparisons yield the probability that two objects represent the same semantic 
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content.  This research also develops three implementations of the model, with each comparing the 

attributes in a different manner, and tests them against sample data models to determine which 

implementation operates with the most precision. 

1.3 Thesis Scope 

The scope of this research is limited to integrating the use of ontologies into MaSE and agentTool, 

the automated assistant for MaSE.  The general concepts of developing and using ontologies as an 

information domain specification mechanism can be applied to other existing multiagent system 

development methodologies.  This research addresses the changes necessary to include these concepts in 

MaSE and agentTool to demonstrate that ontologies can fulfill the requirements of an information model in 

multiagent systems development. 

1.4 Thesis Overview 

The remainder of this document is organized as follows.  Chapter 2 provides background material 

on ontologies and the MaSE methodology.  Chapter 3 describes the requirements and evaluation criteria for 

using domain representation in multiagent systems and how ontologies are used to fulfill these 

requirements.  It also discusses the appropriate places to introduce domain representation into MaSE and 

the steps taken to develop an information retrieval ranking model to assist with mapping component 

ontologies.  Chapter 4 describes the extended MaSE methodology, including the creation and use of 

ontologies in multiagent systems.  Chapter 5 describes the exact characteristics used by the ranking model 

to evaluate the probability that two objects represent the same semantic concept.  Chapter 6 describes an 

example system developed with the extended MaSE methodology and agentTool.  The results and 

experiences from the process of building this example system provide an evaluation of the extended MaSE.  

Chapter 6 also discusses the results from the ranking model experiments to determine the accuracy of the 

three implementations.  Chapter 7 presents the conclusions reached by this research and describes possible 

future research topics. 
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II. Background 

Before considering how to integrate the fields of multiagent systems and ontological engineering, 

one should first look at each field separately.  This chapter is divided into two main parts to discuss 

research in the field of ontological engineering and multiagent systems engineering.  The first part 

discusses the terms used in an ontology, current methodologies for building domain ontologies, 

specification languages for ontologies, and existing graphical toolkits to assist with the construction of an 

ontology.  The second part discusses existing methodologies for building multiagent systems, including 

Multiagent Systems Engineering (MaSE) and agentTool, a tool developed to assist in applying MaSE. 

2.1 Ontologies 

An ontology is an explicit description of objects (or classes) in a domain, properties describing the 

features and attributes (or slots) of the object, restrictions on the slots (also known as facets), and relations 

between the objects in a domain [Noy and McGuinness 2001].  Classes are the main building blocks in an 

ontology.  A class can have subclasses that are objects, which are more specific than the superclass.  For 

example, a Car class could represent all cars, while CompactCar and SportsCar are subclasses of the Car 

class. 

Slots describe the properties of objects.  A car has a color and a Vehicle Identification Number.  

These properties can be defined as slots for the Car class.  Cardinality, type, and range are the facets of a 

slot.  Cardinality refers to the number of values a slot can have, while type refers to the types of values that 

can fill a slot.  String, Number, Boolean, and Instance are common value types [Noy and McGuinness 

2001].  The range of a slot is used for Instance value types and specifies which objects in the ontology can 

fill that slot.  For example, consider owner a slot of the Car class.  The cardinality of the slot is one, 

because there is only one owner per car.  The type would be an Instance type with a range of the Person 

class, where Person is an object used to represent people in the ontology. 
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Terms used in the Unified Modeling Language (UML) of object-oriented software engineering are 

similar to those used in ontological engineering.  Classes are analogous in each discipline and attributes of 

the class are slots.  Relationships in UML are specified as Instance slots with facets used to specify the 

cardinality of the relationship. 

2.1.1 Existing Methodologies for Building Ontologies 

Although ontological engineers have designed numerous ontologies, no robust methodology for 

constructing ontologies exists.  Uschold and Gruninger first proposed a framework for a methodology to 

construct ontologies to encourage research into developing a more detailed and scientific approach to 

ontological construction [Uschold and Gruninger 1996].  Methontology and the IDEF5 Method have both 

been proposed as general-purpose methodologies for building domain ontologies.   

Domain ontologies focus on defining all the concepts and relationships in a specific domain.  

Engineering projects such as TOVE [Gruninger and Fox 1995] and Enterprise [Fraser and others 1995] 

developed ontologies for the Enterprise domain and the designers then published papers describing their 

experiences and the process they followed to construct the ontology.  The Enterprise domain consists of the 

business domain involving business transactions, inventory, sales, etc.  The process used in these projects is 

abstracted to the framework presented by Ushcold and Gruninger, as discussed in Section 2.1.1.1.  This 

section describes the three general purpose methodologies used in constructing domain ontologies. 

2.1.1.1 Uschold and Gruninger 

Although not designed as a complete methodology, Uschold and Gruninger present a skeleton 

methodology for building domain ontologies in [Uschold and Gruninger 1996].  This skeleton is a good 

starting point for developing a complete methodology.  They propose four stages: identify purpose and 

scope, building the ontology, evaluation, and documentation. 
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2.1.1.1.1 Identify Purpose and Scope 

The designer must describe why the ontology is being developed as well as the range of intended 

users of the ontology.  This facilitates ontology reuse by allowing others to quickly see the reason the 

ontology was constructed and what information the ontology contains. 

2.1.1.1.2 Building the Ontology 

With the purpose and scope of the project defined, the user begins to construct the ontology.  This 

stage captures the domain and then codes the ontology into a representative language. 

Capturing the domain develops the ontology by identifying the key concepts and relationships in 

the domain, producing precise unambiguous text definitions for each of them, and identifying the terms to 

refer to them.  A very important part of capture is that the concepts, definitions, and terms need to be 

agreed upon.  For a closed multiagent system, the designer can force the agents to follow a specific 

ontology, but in an open system people must agree to use a specific ontology.  Without agreement on the 

capture phase, people will not want to use the results. 

Coding takes the concepts and relationships along with the definitions and terms for each from the 

developed ontology and represents them in some formal language.  This involves committing to a meta-

ontology which be used to specify the output from the capture phase.  A representation language is chosen 

and then the ontology is written in that language. 

2.1.1.1.3 Evaluation 

This stage reviews the produced ontology to ensure that it is complete and consistent.  Work done 

by [Gómez 1995][Gómez 1996][Gruninger 1995] can be used to assess the proposed ontology during this 

stage.  Gómez and Gruninger recommend a global technical evaluation to ensure well-defined properties in 

each of the definitions of the ontology. 
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2.1.1.1.4 Documentation 

Skuce [Skuce 1995] points out that one of the main problems in the effort of knowledge sharing is 

the lack of adequately documented ontologies.  To properly document the ontology, the designer should 

note all assumptions about the ontology and the process used to describe it. 

2.1.1.2 Methontology 

Methontology is based on Fernández’s experience constructing an ontology for the Chemistry 

domain and is a “structured” method to build ontologies [Fernández and others 1997].  In each of the stages 

of the methodology, the authors encourage evaluation and documentation of all the outputs from the stage. 

The first stage of Methontology is specification.  This stage produces a specification document, 

which includes the purpose of the ontology under development, the level of formality for coding the 

ontology, and the scope, characteristics, and granularity of the ontology.  Having defined the project, the 

analyst begins the knowledge acquisition stage, obtaining information to help produce a set of terms and 

their meanings.  Any form of knowledge acquisition is allowed. (such as brainstorming, interviews, 

reviewing other ontologies, etc.) 

Once the designer constructs a set of terms from the information obtained, the conceptualization 

stage structures this domain knowledge in a conceptual model to describe the problem and the solution in 

the vocabulary developed in earlier stages.  The next step is integration, where the ability to integrate any 

existing ontology is considered.  The authors highly encourage reusing existing ontological definitions.  If 

the designer finds an ontology to reuse, he should develop an integration document, as shown in Figure 1. 

Meta-Ontology The frame-ontology in Ontolingua 
Term in your 

Conceptualization 
Ontology to be reused Name of the term in 

the ontology 
Kilometer Standard-Units in Ontolingua Kilometer 
Centimeter Standard-Units in Ontolingua Undefined 
Exponent KIF-Numbers in Ontolingua Expt 

Figure 1 Example Integration Document [Fernández and others 1997] 
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In the final stage, the analyst implements the ontology, coding it into a formal language.  See 

Section 2.1.2 for a discussion on formal languages typically used for specifying ontologies.  An example 

chemical ontology is developed using this methodology in [Fernández and others 1999].  The Ontology 

Design Environment, discussed in Section 2.1.3 assists the designer in the development of ontologies using 

Methontology. 

2.1.1.3 KBSI IDEF5 

The IDEF5 method is based on an evolving prototype model designed to assist in the creation and 

management of domain ontology models [KBSI 1994].  IDEF5 uses the terms kind to refer to classes and 

characteristics to refer to attributes of the kinds.  The methodology is divided into five activities: 

organizing and scoping, data collection, data analysis, initial ontology development, and ontology 

refinement and validation. 

2.1.1.3.1 Organizing and Scoping 

The designer must first establish the purpose, context and viewpoint for the ontology development 

project and assign roles to the team members.  The viewpoint describes from what perspective the domain 

is being designed, e.g. from the project manager’s viewpoint. 

2.1.1.3.2 Data Collection 

With the project defined, the designer must now determine what information the ontology should 

contain.  IDEF5 defines three modes of data collection:  observation of activities, interviews and analysis 

with domain experts, and direct transcription of data from documents from the domain.  Six different types 

of forms are used to catalog the source material and term pool.  The term pool is similar to a list created by 

brainstorming; it represents meaningful terms relevant to the development of the ontology.  These terms 

might become kinds, relations, or characteristics in the ontology. 
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2.1.1.3.3 Data Analysis 

The goal of this step is to analyze the source material and term set from the previous step and 

construct an initial characterization of the ontology.  Listing objects of interest in the domain is the first part 

of this characterization.  The viewpoint and context of the project, as determined in the organizing and 

scoping activity, guides the level of detail for specifying objects.  The team should then look for systems of 

objects that work together to accomplish common goals. 

2.1.1.3.4 Initial Ontology Development 

The Developing Initial Ontology activity develops proto-kinds, proto-properties, proto-attributes, 

and proto-relations.  The proto simply refers to the fact that these are the first attempt at specifying these 

concepts in the ontology.  IDEF5 provides a visual representation of the ontology so that the ontology can 

be developed graphically. 

2.1.1.3.5 Ontology Refinement and Validation 

The designer must now ensure that the developed ontology contains all domain information.  This 

activity completes the design process by validating and refining the proto-concepts in the developed 

ontology.  The analyst should make instances of the proto-kinds using examples from data in the domain.  

Any information from the domain that cannot be represented by a proto-kind should be analyzed to 

determine if it is needed in the ontology.  If it is, then a new or expanded kind must be developed to 

incorporate the information.  Finally, the kinds should be checked to ensure there are no duplicates.  

Relations are verified in a similar procedure to ensure that there are no missing, duplicate, or contradictory 

relations.  The ontology can then be changed from the IDEF5 graphical schematic language to the IDEF5 

elaboration language.  The elaboration language is a structured textual language with the full power of first-

order logic. 
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2.1.1.3.6 Comparison to Methontology 

IDEF5 is a more mature methodology in that its steps are more detailed than those in 

Methontology.  The record keeping in IDEF5, however, may become cumbersome to the developer.  When 

collecting possible terms, the methodology requires the designer to assign each term a tracking number, 

along with information regarding how the term was produced.  This level of tracking may be appropriate 

for critical system development, but some designers may find it a little too involved. 

2.1.2 Specification Languages for Ontologies 

Each of the methodologies described in the previous section describes the encoding of the 

ontology into a formal language.  LOOM[MacGregor 1991], Epikit[Genesereth 1990], Algernon[Crawford 

and Kuipers 1989], CycL[Lenat and Guha 1990], and KEE[Fikes and Kehler 1985] are all languages that 

can be used to represent ontologies, but Ontolingua[Gruber 1992] is used most frequently and 

DAML+OIL[van Harmelen and others. 2001] is the most recently developed language.  Ontolingua was 

built as a language used to translate between the other specification languages.  It consists of forms that 

allow definition of classes, relations, objects, functions, and theories based on a standard notation and 

semantics called Knowledge Interchange Format (KIF) [Genesereth 1998].  The syntax of Ontolingua 

definitions consists of a name, argument list, and a documentation string, followed by a set of labeled KIF 

sentences.  To define a class, a designer uses the form: 

(define-class class-name (?instance-variable) 

“documentation string” 

:def or :iff-def KIF-sentence 

:constraints KIF-sentence 

:sufficient KIF-sentence 

:equivalent KIF-sentence 

:default-constraints KIF-sentence) 

:axioms KIF-sentence 

 12



 

 

The benefits of Ontolingua are its expressive power and the large amount of already constructed 

ontologies [Ontolingua].  DAML+OIL is part of the DARPA Agent Markup Language Program designed 

to provide constructs for creating ontologies and marking information on the web so that it is machine 

readable and understandable.  DAML+OIL is based on the Extensible Markup Language (XML) [W3C 

1998] Uniform Resource Identifiers(URI) [Berners-Lee and others 1998], and the Resource Description 

Framework(RDF) [W3C 1999].  The benefit of DAML+OIL is the ability to use XML instead of predicate 

logic to specify the ontology.  There is also a repository of existing DAML+OIL ontologies that can be 

downloaded [DAML+OIL].  To define a class, the designer would use the following form: 

<daml:Class rdf:ID=”class-name”> 

 <rdfs:label>class-name</rdfs:label> 

 <rdfs:comment> 

 A Comment 

 </rdfs:comment> 

</daml:Class>  

2.1.3 Graphical Toolkits for Building Ontologies 

Graphical toolkits allow the designer to graphically view the information being encoded into the 

ontology, thereby reducing information overload.  The Ontology Design Environment (ODE), Protégé 

2000, and OILEd exist as free software that can be used to develop ontologies.  ODE is designed to assist 

in the development of ontologies using the Methontology methodology.  OILEd is a program that allows 

users to develop ontologies and specify them in the DAML+OIL language. 

Protégé 2000 is the most robust of the three programs because it allows for plugins to be 

downloaded and inserted into the program.  These plugins can be used to import and export the ontology 

into different ontology specification languages and ontology visualization programs.  A screen capture of 

Protégé 2000 is shown in Figure 2. 
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Figure 2 Protégé 2000 Main User Interface 

The program has tabs that allow the designer to look at the objects and slots in the ontology.  The 

objects are ordered by their taxonomy, that is by their subclass/superclass structure.  When an object is 

clicked, the program displays the information from the object, including the slots for the object and the 

facets on the slots. 

2.2 Multiagent Systems 

An agent is anything that can perceive its environment through sensors and act upon the 

environment through effectors [Russel and Norvig 1995].  An intelligent agent is an agent that takes the 

best possible action in a situation in order to accomplish its goals.  Determining what exactly characterizes 

the best possible action splits the field of artificial intelligence into those who feel intelligent agents should 

be rational and those that prefer agents to act like humans.  The distinction between the way the agents 

operate is not important for this research. 
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A multiagent system consists of multiple intelligent agents interacting to accomplish their goals.  

In Multi-Agent Systems, Ferber defines a multiagent system as a system composed of the following 

elements: 

• An environment, E. 

• A set of objects, O.  These objects can be perceived, created, modified, and destroyed by 
agents. 

• A set of agents, A, representing the active entities of the system.  (A ⊆  O) 

• A set of relations, R, that link objects to each other. 

• A set of operations, Op, that allow the agents in A to interact with the objects in O. 

This research is concerned with goal-based multiagent systems.  Each multiagent system has a set 

of goals that the agents in the system are designed to obtain.  The exact behavior of the various agents is 

determined during the analysis and design of the multiagent system based on the goals required by the 

system specification. 

Interest in multiagent systems has increased as resources become more and more distributed.  

With the advent of the Internet, many problems have become distributed so much that a centralized solution 

will no longer work.  Some problems such as air traffic control naturally lend themselves to multiagent 

systems due to their distributed nature.  Various methodologies have been developed to provide an 

engineered approach to the development of multiagent systems.  Three such methodologies are discussed in 

the next sections. 

2.2.1 Multiagent Systems Engineering Methodology 

The Multiagent Systems Engineering (MaSE) methodology has been a topic of the Agent 

Research Group at the Air Force Institute of Technology for the last few years.  Research has focused on 

developing a robust methodology for constructing multiagent systems.  MaSE divides the development of 
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multiagent systems into analysis, design, and implementation phases [DeLoach and others 2001].  MaSE 

consists of three steps in the analysis phase and four steps in the design phase.  The phases and their steps 

are shown in Figure 3.  The implementation phase uses the documents from the previous phases to program 

the system into code. 

Creating
Agent
Classes

Requirements

Use Cases

Sequence
Diagrams

Deployment
Diagrams

Agent
Architecture

Capturing
Goals

Refining
Roles

Assembling
Agent
Classes

System
Design
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Tasks

Conver-
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Figure 3 MaSE Phases, Steps and Models 

2.2.1.1 Analysis Phase 

The analysis phase is concerned with establishing a set of roles and assigning tasks to those roles 

to describe the system requirements.  The Capturing Goals step consists of transforming the initial system 

specification into a goal hierarchy.  Goals are used to reflect the purpose of an agent’s actions.  This step 
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allows the designer to organize the goals that the system needs to accomplish.  Figure 4 is an example of 

the output from this step. 

 
Figure 4 Example Goal Hierarchy Diagram [DeLoach 2001] 

The basic scenarios that the system should perform are captured in the Applying Use Cases step.  

Use cases are created and then transformed into sequence diagrams.  The final step of analysis uses the 

outputs from the first two steps to create roles and assign the tasks to be performed by those roles in the 

system.  Tasks are associated with each role to describe the behavior that the role must have to accomplish 

its assigned goals.  Concurrent tasks are shown graphically using a finite state automaton. 

Figure 5 is an example of a Role Model in MaSE and Figure 6 is an example Concurrent Task 

Diagram.  Each role is associated with at least one goal from the goal hierarchy.  Transitions in the 

concurrent task diagrams follow the syntax trigger [guard] ^ transmission(s).  This syntax represents that a 

transition is enabled only when the event trigger occurs and the condition guard evaluates to true.  When 

the transition is executed, the specified transmission(s) will be executed by the role.  Once in a state, the 

task remains in that state until all actions defined in that state have been completed and a transition out of 

the state has been enabled. 
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Figure 5 Example MaSE Role Model [DeLoach and Wood 2000b] 

 
Figure 6 Example Concurrent Task Diagram [DeLoach and Wood 2000b] 

2.2.1.2 Design Phase 

Once the requirements for the system have been specified, the design of the multiagent system 

begins.  The first step in the design phase is Creating Agent Classes, where the roles are assigned to 
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different agent classes.  This step creates an Agent Class Diagram that shows the classes in the system and 

the conversations between classes.  These conversations are defined in the Constructing Conversations step, 

where finite state automata are used to show the states in a conversation. 

Figure 7 is an example Agent Class Diagram with Figure 8 describing one of the conversations 

between agents in the class.  Each conversation has two diagrams: one for the initiator and one for the 

responder of the conversation. 

 
Figure 7 Example Agent Class Diagram [DeLoach 2001] 

 
Figure 8 Example Conversation Diagram [DeLoach 2001] 
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The third step in design, Assembling Agent Classes, defines the components of the architecture.  

The final step of System Design creates a Deployment Diagram to show the amount and location of each 

type of agent in the system.  The outputs from the design steps describe the actions and conversations used 

in the multiagent systems.  The semantics of the parameters passed in those conversations are not currently 

defined in the MaSE process. 

2.2.1.3 agentTool 

agentTool is an automated assistant for the MaSE methodology [DeLoach and others 

2001][DeLoach and Wood 2000a].  The program has tabs for each of the outputs from the phases in MaSE, 

and currently allows for the automatic generation of design documents based on the role models and task 

diagrams.  This automatic generation uses transformations from research by Clint Sparkman [Sparkman 

2001].  Once the designer specifies the system in agentTool, the program can output Java code for the 

system.  Because ontologies are not incorporated in the MaSE methodology, the code produced from 

agentTool classifies all parameters as Java Objects.  The designer must then go through and change the 

declarations to the appropriate data structure used to represent the semantic concepts of the parameters.  

Including the construction of the system ontology removes the necessity of this step, as the parameters can 

automatically be specified as the correct type. 

2.2.2 Additional Multiagent Systems Engineering Methodologies 

This section discusses two other methodologies for agent-oriented software engineering.  Gaia is 

one of the earliest developed agent-based software engineering methodologies and MESSAGE is one of the 

newest methodologies.  As MESSAGE was developed to improve on Gaia, this section first discusses the 

Gaia methodology. 

2.2.2.1 Gaia 

Gaia is specifically tailored for the analysis and design of agent systems. [Wooldridge and others 

2000]  The authors wanted to develop a way to describe an agent’s autonomous behavior and agent 

 20



 

 

interactions, which could not be specified using traditional software development techniques, such as 

object-oriented development.  Figure 9 shows the various models of the methodology and the relationships 

between them. 

Requirements
Statement

Roles Model Interactions
ModelRoles Model Interactions
Model

Agent Model Services
Model

Acquaintance
ModelAgent Model Services

Model
Acquaintance

Model  
Figure 9 Relationships Between Gaia Models 

 
Figure 10 Example Gaia Role Schema [Wooldridge and others 2000] 
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Permissions describe the rights of the role to access variables in the system.  For example, the 

CoffeeFiller may read the variable coffeeStatus and change the variable coffeeStock.  The permissions are 

key to the role accomplishing its responsibilities.  In the above example, the CoffeeFiller is responsible for 

performing the activity CheckStock and performing the protocols Fill, InformWorkers, and AwaitEmpty, 

while ensuring the coffeeStock is always greater than zero.  Activities are underlined and represent private 

actions while the protocols represent interactions with other roles. 

The Interaction Model describes each of these protocols in further detail.  Figure 11 graphically 

represents the Fill protocol.  The diagram indicates that the Fill protocol is initiated by the CoffeeFiller role 

and involves the CoffeeMachine role.  The protocol involves filling the supplied coffeemaker and 

informing the CoffeeMachine about the value of coffeeStock.  Each protocol has a purpose, initiator, 

responder, inputs, outputs, and processing functions.  Figure 11 graphically illustrates all of these attributes, 

in a very non-intuitive manner. 

 
Figure 11 Example Gaia Interaction Model 

2.2.2.1.1 Design 

Once the roles and the interactions between them are specified, the designer then transforms the 

models into a level of abstraction such that traditional design techniques can be applied to implement the 
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agents.  This is the goal of the design phase, which consists of three models: Agent, Services, and 

Acquaintance. 

The Agent Model describes the structural model of the system, defining the agent types in the 

system and the roles performed by each type.  The model also includes the number of actual instances of 

each agent type in the implemented system. 

Once the roles are assigned to agent types, the Services Model is built to identify the functions of 

the agents.  The functions are derived from the activities performed by the roles assigned to an agent.  Each 

identified service is described in terms of its inputs, outputs, pre-conditions, and post-conditions.  The high 

level behavior of each service is defined, leaving the implementation details for later specification by the 

developers. 

The authors describe the Acquaintance Model as the simplest model in the methodology 

[Wooldridge and others 2000].  This research considers it the least useful model, defining the 

communication links that exist between the agent types.  The problem is that the model does not define the 

conversations or messages sent between the agent types, only the fact that some type of communication 

exists between the two.  The model is represented using a directed graph to show the communication flow, 

to allow the designer to identify any potential bottlenecks in the system. 

The system is now described in enough detail to implement the system using traditional design 

techniques.  Gaia represents a good stepping-stone for a complete methodology for building multiagent 

systems, as it defines the early design stages but finishes without the system fully defined.  However, a 

complete methodology must provide the designer with a complete design specification.  MaSE provides 

greater details regarding each of its steps and finishes with a lower level system design than Gaia.  

2.2.2.2 Methodology for Engineering Systems of Software Agents (MESSAGE) 

MESSAGE is a two-year long project to build upon Gaia and other early multiagent engineering 

methodologies and incorporate existing UML development approaches [Evans and others 2001].  In this 
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manner, MESSAGE guides the user further along in the design, using UML instead of leaving the analyst 

to finish using some other technique, as the Gaia methodology does.  MESSAGE thus produces a lower-

level design, and is more useful for development than Gaia. 

MESSAGE defines five views to describe the data, structural, and behavioral models of the 

system:  organization, goal/task, agent/role, interaction, and domain view.  The organization view shows 

the agents in the system and the relationships between them.  The goal/task view uses UML Activity 

Diagram notation to describe the states that an agent goes through to perform tasks to accomplish goals.  

These goals are assigned to roles in the agent/role view.  This view describes what roles an agent performs 

and what the goals of each role are.  To accomplish the goals, the agents have to interact, which is behavior 

described in the interaction view.  For each interaction, this view describes the initiator, collaborators, 

relevant information supplied, and the event that triggers the interaction.  The final view, domain, defines 

the information domain of the system so that the appropriate objects can be passed during interactions.  The 

methodology, however, does not address methods to construct the domain view and how to transform the 

view into an ontology. 

2.2.2.2.1 Analysis 

Because the models are interconnected, the methodology recommends starting analysis using three 

parallel streams of development that are then reconciled together.  One stream creates the entities and 

identifies the interactions between the entities in the organization view.  The second stream identifies the 

goals, tasks and the relationships among them in the goal/task view.  The last stream identifies the 

information domain entities in the domain view.  These three streams provide an initial set of concepts that 

are then linked together in the different views and described in detail. 

2.2.2.2.2 Design 

Once the analyst has fully described the views of the system, he begins the design phase to 

produce computational entities to implement the multiagent system described in the analysis phase.  
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MESSAGE describes two methods of designing the system, without recommending either one.  As such, 

the methodology leaves the user to choose a design strategy appropriate for the situation.  One interesting 

item is that one of the design methods discussed in [Evans and others 2001] involves creating use cases and 

sequence diagrams, a step which is an analysis step in most software development methods. 

MESSAGE provides a set of analysis and design documents that describe the system in greater 

detail than the Gaia documents.  MESSAGE also uses familiar UML modeling techniques to improve the 

information visualization of the analysis and design documents.  However, one difficulty with using the 

methodology is the parallel development process.  Designers must define five different views in a 

simultaneous process.  The iterative process of MaSE allows the designer to perform the same tasks as in 

MESSAGE, but places the analysis and design process in a step-by-step method than can be iterated 

through in a manner that may be easier for users to follow. 
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III. Problem Approach 

This research hypothesizes that ontologies developed to represent the information domain of a 

multiagent system, when coupled with methods formalizing the behavior of multiagent systems, provide 

design documentation that describes the actions of the agents and the view of the domain necessary to 

generate a properly functioning system.  To evaluate this hypothesis, this research first determines the 

requirements needed to represent and use the information domain of a multiagent system.  These 

requirements are discussed in this chapter along with the type of ontology used to specify the information 

domain in MaSE.  Finally, this chapter presents a method for constructing ontologies for multiagent 

systems based on existing methodologies for building domain ontologies.  This ontology building method 

is integrated into MaSE, along with additions to use objects in the data model, forming a complete analysis 

and design methodology.  This chapter presents a discussion of each of these steps. 

3.1 Requirements for Domain Representation in Multiagent Systems 

3.1.1 Requirements for Information Domain Models in Multiagent Systems 

To adequately specify the domain of a multiagent system, a representation must meet certain 

requirements.  These requirements are based on effective software engineering models and how domains 

are used in multiagent systems.  This section describes the requirements that ensure the domain 

representation is adequately specified in the design of a multiagent system. 

The first requirement is that the representation must specify the objects in the domain.  The names 

of the objects in the domain should be unique, and a description of each object should be included.  The 

description is used to help future designers understand what the original developers of the representation 

meant for the object to semantically represent. 
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Once the objects are listed, the properties of those objects must also be specified.  The properties 

further describe the semantic content of the object.  Properties, such as has_Color, are often represented as 

attributes of an object, but that is an implementation decision. 

After the object’s characteristics are specified, the representation must then specify the 

relationships between the objects.  The relationships show how objects are related and how they interact in 

the domain.  Relationships are frequently represented as attributes of the object.  An example relationship is 

Works_for that exists between a Laborer and Manager Object.  Works_for illustrates that a Laborer must 

work for a Manager, thus restricting the possible interpretations of the objects. 

Axioms define further constraints on the domain objects that cannot be described as properties or 

relationships.  For example, a disjunct axiom between a Beast and Human object would be used to 

represent that, although both are a Thing object, something cannot be a Human and a Beast.  Other axioms 

can be specified using first-order logic.  The axioms must describe all restrictions on the domain objects 

that the system uses during system execution.  If no type of inference or knowledge-based system is used in 

the multiagent system, the axioms in a domain representation can be omitted.  Axioms specify the 

preconditions required for proper system execution. 

The domain representation must also contain metadata about the domain itself.  This metadata aids 

future developers in understanding the objects, properties, relationships, and axioms.  The designers 

develop the representation to meet a certain goal, and to fit the needs of the system being developed. As 

such, it is important to describe the system under development.  The metadata also includes information for 

software maintenance such as the name of the representation, names of the original developers, version 

number, date of creation, etc. 

Each specification regarding the domain, objects, relationships, axioms, and metadata must be 

clear, consistent, and concise.  This is necessary so others can easily comprehend the documented aspects 

of the software system.  Clear requires the use of unambiguous terms to describe the domain.  If a term can 

have multiple definitions, the surrounding description should ensure that future readers can easily 
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understand which definition is desired.  Concise balances out clear, by describing the domain with the least 

amount of terms necessary.  The description of each object should be long enough to aid understanding 

without being so perfuse as to hinder the future readers of the domain representation.  The system should be 

concise in the number of terms used to describe the objects, as well as the number of objects, properties, 

relations, and axioms specified for the domain.  Consistent requires designers to specify objects in the same 

level of detail.  Axioms are consistent if they are not contradictory.  If the objects and axioms are not 

consistent, the system may malfunction and future developers may not understand the domain 

representation. 

The final requirement is that the representation should be built to only include information that is 

used by the system.  This aids reuse of the software system, because the domain representation acts as a 

type of precondition for the proper execution of the system.  In order to reuse a multiagent system, the 

larger system must either have the same view of the domain, or the designer must provide a mapping 

between the representations of its components.  If a multiagent system over-specifies its domain, future 

reuse could require additional work mapping to objects in the representation that the component system 

never uses. 

3.1.2 Requirements for Information Domain Use in Multiagent Systems Development 

Along with the requirements on the domain specification, there exist certain criteria that a 

methodology for developing a multiagent system should meet when describing the information domain.  

This section discusses each of the criteria and its importance. 

A methodology for designing multiagent systems should include a step to allow for the 

specification of the information domain of the system.  Just as it is important to specify the data model in a 

traditional software development process, the data model for a multiagent system must also be specified.  

The agents in the system interact by passing messages and these messages frequently involve passing 

parameters.  These parameters are objects of some sort, and without an information domain specification, 

the methodology cannot address the information contained in these parameters. 
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The development of this system data model should occur at a logically appropriate time in the 

multiagent system design methodology.  The development should occur prior to describing any information 

passing by the agents, since the data models are used in specifying the types of objects passed.  The 

construction of the data model should also occur after the designer evaluates the problem domain enough 

so that he knows what information must be included in the data model. 

The methodology used to create the information domain specification should be an iterative 

process to match the iterative nature of software development.  If the designer discovers missing or 

inappropriate information later in the system development, he should have the ability to modify the 

information domain specification appropriately. 

Once the system data model is constructed, the multiagent system design methodology should 

allow the analyst to specify objects from the data model as parameters in the conversations between the 

agents.  To ensure the proper functionality of the multiagent system, the designer must be able to verify that 

the agents have the necessary information required for system execution.  Since the information is 

represented in the classes of the data model, the design of the methodology must show the classes passed 

between agents to allow the designer to verify the proper flow of information in the system. 

Along with building a system data model, the multiagent system design methodology should allow 

agents to have their own individual data models.  By addressing this capability, the methodology allows for 

the development of heterogeneous systems.  The requirement for a multiagent system to integrate with 

existing systems often creates such heterogeneous systems.  With the various data models comes the 

requirement to show how the information models relate. 

The methodology should provide the ability for the designer to show the relations between the 

data models in some manner.  Showing the relationships indicates to the code developers what information 

from one model is required to create objects in the other model.  Without describing these relations, the 

developers may not be able to code the conversations between two agents with separate data models, as 

each agent uses different classes to describe the information. 
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3.2 Methodology for Including the Information Domain in MaSE 

This section discusses the approach of this research to fulfilling the criteria for building and using 

information domain specifications in multiagent systems.  Ontologies will be used to specify the 

information domain, requiring extensions to MaSE to address the development and use of the developed 

information model.  The rest of this section discusses the type of ontologies used, the methods for building 

them, and the necessary additions and modifications to MaSE. 

3.2.1 Structure of an Ontology 

Chapters I and II outlined the various definitions of an ontology.  One consequence of varying 

definitions is that the structure of an ontology can vary from application to application.  A comprehensive 

ontology structure is devised by performing a union on the capabilities of the various structures discussed 

in Chapter II.  The resulting structure, represented by the UML model in Figure 12, contains the expressive 

power to represent any of the ontologies presented in ontological research.  Each part of the structure is 

discussed in this section. 

The Ontology object contains the metadata about the ontology.  This data contains the name of the 

ontology, the designers, version number, the language the ontology was developed in, an identifier, and the 

description of the ontology.  The description field is designed to explain the purpose for which the ontology 

was originally designed and any other information the designers feel that people should know about the 

ontology.  The ontology is composed of a collection of classes (or objects) and axioms. 

Axioms allow the ontology to describe characteristics of objects using first order logic.  The 

Axiom object is an abstract class from which the various types of axioms inherit.  The three types of axioms 

identified are: equivalence, disjoint, and covered.  Equivalence is self-explanatory: it allows for the 

ontology to specify that two classes represent the same semantic idea in the ontology.  This type of axiom 

occurs when two ontologies are imported to form a larger one.  The two imported ontologies can use 

different objects to represent the same semantic ideas, so designers use equivalence axioms to illustrate the 

similar objects from the imported ontologies.  Two classes are disjoint if a domain object cannot 
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simultaneously belong to both classes.  As an example, consider the herbivore and carnivore classified 

objects with a disjoint axiom between them.  This indicates that an animal can be a herbivore or carnivore, 

but can not be both.  The covered axiom allows for restrictions and other characteristics to be specified for 

an object using first order logic or a natural language.  It consists of a list of statements (coverers) and the 

class that the statements restrict or describe.  For example, a covered axiom for an adult_elephant class 

would be that the age attribute has to be between 5 and 8 years of age.  Any elephant younger would be 

considered a youth_elephant and any elephant older would be a senior_elephant, and appropriate covered 

axioms would be defined for those objects.  Designers use these axioms to specify additional information 

about the classes. 
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Figure 12 Structure of an Ontology 
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Classes are the main building blocks of an ontology.  The structure shown in Figure 13 describes 

the structure of a Class object.  A class can be abstract or concrete, which is the role of the class.  An 

abstract class cannot be instantiated and is used to group related classes under one class that defines the 

similarity between the classes. 

Class
<<St ring>> Role
<<St ring>> Name
<<St ring>> Descript ion
<<List>> Slots
<<List>> Cons traint s

 
Figure 13 Structure of a Class in an Ontology 

The name and description fields are used to uniquely describe the class and what it represents in 

the domain.  The class has a collection of slots (or attributes) and a collection of constraints.  Constraints 

define the axioms that apply to the class.  Slots describe the various attributes of the class in the domain.  

These attributes represent properties, characteristics, and states of the object or relationships between 

classes in the domain. 

The structure of a Slot is illustrated in Figure 14.  Each slot has a name and description, similar to 

a class object in the ontology.  The ValueType field defines the type of slot.  The most common types of 

slots are:  Number, Boolean, String, Instance and Enumerated.  Enumerated slots have a list of allowed 

values.  An example would be Color as a slot with the enumerated values red, blue, or green.  These 

enumerations are saved as a list in the Values field for the slot.  An instance slot shows relationships 

between classes in the ontology.  An instance slot can have one or more specified classes from the ontology 

as values.  The allowed values of an instance slot are saved in the Allowed_Classes field.  An example of 

an instance slot is has_Parent.  This slot belongs to a Person class and the Allowed_Classes field shows 

that the slot can point to any instance of a Person.  The instance slot has_Parent illustrates that there is a 
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relationship that can exist between two Person objects, where one class is the parent of the other.  Other 

information such as the minimum and maximum number of classes that the slot can contain or the 

minimum and maximum value for an integer or float slot can be specified.  The designers can also set the 

Required field to specify whether the slot is required for a class.  The Inverse_Slot shows the inverse 

relationships in the ontology.  For example, the slot has_Parent could be defined to specify the parent of a 

Person object.  The inverse for this slot would be has_Child slot. 

Slot
Nam e
Description
Values
ValueType
Allowed_Classes
Minim um
Maxim im um
Inverse_Slot
Required
Multiple
At_Least
At_Most

 
Figure 14 Structure of a Slot 

The classes, their axioms, and their instantiations all combine to form an ontology.  A 

specification of an ontology contains these components and must be concise, complete, clear, and 

consistent. 

3.2.1.1 Characteristics of an Ontology 

The methodologies for building domain ontologies described in Chapter II contain an evaluation 

section that examines the ontology to ensure it is concise, clear, consistent, and complete.  These 

characteristics ensure that the ontology is well defined for future reuse and comprehension.  The terms 

concise, clear, and consistent represent the same concept in ontologies as in the requirements for domain 

representation discussed earlier. 
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To be concise requires that every piece of information in the ontology, such as names and 

definitions of classes, contain the least amount of information necessary for describing the domain.  This 

characteristic is balanced by the necessity for the ontology to be complete.   

All terms used in describing the ontology must be clear.  The terms should be unambiguous and 

easily understood by others.  This characteristic is key to reuse as future developers will not reuse 

ontologies that contain aspects that cannot be easily understood. 

Another key to reuse is the consistency of the ontology.  Consistent ontologies provide no 

contradictory or overlapping terms.  This is particularly important for ontologies that are frequently used in 

knowledge-based systems that contain forms of machine reasoning.  If reasoning over the ontology yields 

contradictory results, the system will not perform well. 

To be complete requires that the ontology describe the domain to the level of granularity specified 

by the designers in the metadata description of the ontology.  This definition does not mean that everything 

in the domain should be covered.  For example, when constructing an ontology based on the domain of Air 

Traffic Control, the ontology should not describe an Airplane object as a collection of Nuts, Bolts, and 

Aircraft_Parts.  Although those classes are the building blocks of an Airplane, they are not necessary to 

describe the domain in terms of scheduling and directing the airplanes in flight.  An ontology is complete 

when it covers all objects in the detail necessary for the designer’s purpose. 

3.2.2 Methodology for Building System Ontologies 

So designers can use ontologies to specify domain representations in multiagent systems, an 

appropriate methodology for developing ontologies must be specified.  The existing methodologies for 

designing domain ontologies are built to describe everything about a specific domain.  This is not 

appropriate for multiagent systems because one of the requirements is that designers only specify 

information required for proper system execution.  The existing methodologies work for multiagent 

systems after slight modifications. 
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Reinventing the wheel, by developing a whole new methodology, does not make sense, because 

many years of research have gone into developing the domain ontology methodologies mentioned in 

Chapter II.  Instead, this research extracts the main parts common to the methodologies.  Thus, the 

important parts of the methodologies are included without the administrative overhead, such as tracking all 

possible classes or documenting every little step, as is the case in the IDEF5 method [KBSI 1994]. 

The resulting methodology is an iterative process that matches the iterative nature of multiagent 

system design.  Methodologies such as MaSE allow designers to iterate through various steps, thus 

providing more flexibility than a sequential step-by-step methodology.  Changes can be made to previous 

steps without having to start the whole process again.   

Four main steps can be extracted from the existing methodologies for building domain ontologies.  

These steps are used as the foundation to create a methodology to construct ontologies for use in multiagent 

systems.  The four steps are: 

• Define Purpose and Scope of Project 

• Collect and Analyze Data 

• Construct Initial Ontology 

• Refine and Validate Ontology 

The remainder of this section is devoted to briefly discussing these steps and the general activities 

that fall into them.  Chapter IV presents detailed descriptions of each step, along with directions, principles 

and hints for each phase of the ontology development process. 

3.2.2.1 Define Purpose and Scope of Ontology 

As discussed earlier, the metadata for an ontology should describe the purpose and scope of the 

project.  This data aids future designers in understanding the ontology based on the goals for which it was 

developed.  This phase describes the purpose of the ontology based on the system requirements and 
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software engineering documents that are used to develop multiagent systems.  For example, when building 

a multiagent system to play poker in a distributed network, the purpose of the constructed ontology is to 

describe the objects in the poker domain.  The scope of the system is to describe all objects necessary to 

permit the development of a distributed poker game. 

3.2.2.2 Collect and Analyze Data 

This step involves analyzing data in the problem domain along with the system requirements to 

discover terms that may later become part of the ontology.  There are many methods with which the 

designer can extract candidate terms for the ontology.  Sample methods include: brainstorming, interviews 

with users, and reviewing project documents.  The collected terms are analyzed to determine those that are 

needed for proper execution.  Those not required are removed from the list.  The remaining terms are used 

as possible classes, relations, and characteristics for the initial ontology.  For the poker example, the list of 

possible terms includes:  hand, cards, player, bet, fold, raise, call, money, and pot. 

3.2.2.3 Construct Initial Ontology 

The possible terms are organized into an ontology that describes the nature of the domain needed 

by the system to meet its requirements.  The methodology provides hints to the designer to help determine 

proper classes, properties, and relationships based on the terms collected in the previous step.  The 

construction step also addresses the use and integration of previously built ontologies.  In the poker system, 

the initial ontology could define a player object that had money and a hand of cards along with the other 

necessary system classes. 

3.2.2.4 Refine and Validate Ontology 

This final step is an iterative process that occurs throughout the development of a multiagent 

system.  The initial ontology can be validated through the creation of instances of the objects in the 

ontology to ensure the system can execute properly using the data.  Throughout the multiagent system 

development process, refinements to the ontology may arise.  Within this step, the designer can modify the 
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ontology to meet added system requirements at any point in the multiagent system development.  To 

validate the poker example, the designer would step through the use cases to ensure they can be completed 

using the data objects in the ontology.  As the designer continues to build the system, changes to the 

ontology are made as necessary. 

3.2.3 Methodology for Building Component Ontologies in Multiagent Systems 

Along with developing the system ontologies, the designer must develop the component ontology.  

The component ontologies specify the data models of any agents that do not have the same data model as 

the system ontology.  Agents built to interact with legacy systems or reused from previous development 

projects may not use the same data model as the system.  Developing the ontologies for the agent 

components is analogous to the development of the system ontology; the scope is just at a lower level.  The 

only added step in creating component ontologies is to map the terms in the ontology to the corresponding 

terms in the system ontology.  If the component ontology is the same as the system ontology, no mapping is 

required.  If not, each component term should match to a term in the system ontology.  This allows the 

developers to see how the designers want the systems to match up in terms of the system data.  

3.2.4 Integrating the Construction of Ontologies into MaSE 

The steps in MaSE contain detailed explanations, descriptions, and examples not found in either 

the Gaia [Wooldridge and others 2000] or MESSAGE [Evans and others 2001] methodologies.  For this 

reason, this research integrates ontological engineering into MaSE.  The methodologies built to construct 

and use ontologies can work in Gaia and MESSAGE by integrating them in a manner consistent with the 

models of each methodology.  This research shows the integration of the concepts into MaSE as an 

example implementation of integrating ontological engineering into multiagent systems development 

methodologies. 

To integrate ontological engineering into MaSE, this research introduces a new step in which the 

designer constructs the ontology for the system in the MaSE analysis phase.  This research determined the 
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step should occur after the creation of use cases.  This placement allows the designer to use terms from the 

goal hierarchy, use cases, and sequence diagrams as possible concepts in the ontology and the resultant 

ontology can be used to create tasks in the Refining Roles step of MaSE.  Tasks often indicate parameter 

passing, so the step is placed after the construction of the ontology to allow the designer to specify the type 

of the parameters as classes from the ontology.  The extended MaSE diagram is shown in Figure 15. 
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Figure 15 Extended MaSE Methodology 

It is possible to place the ontological construction before the use cases step to allow the actors in 

the sequence diagrams to pass objects from the ontology.  With this placement, however, the designer 

cannot use the sequence diagrams as a tool in validating the ontology.  By constructing the ontology after 

the sequence diagrams are created, the developer can ensure that the ontology describes the required 

information for the sequence of events in each of the sequence diagrams.  If the ontology is missing 
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information or contains extraneous information, the developer can take the appropriate actions to fix the 

ontology.  The benefit of being able to pass objects from the ontology in the sequence diagrams is 

outweighed by the benefit of using the diagrams to validate the ontology. 

The agent architecture step is modified to include the ability for designers to specify ontologies for 

the different agent components and to map them to the overall system ontology.  The ranking model 

discussed in Section 3.3 assists the user with mapping the various ontologies.  This research modifies the 

Refining Roles and Constructing Conversations steps, which involve message passing, to include 

specification of the types for the parameters passed in the messages.  When combined with the additional 

step of constructing the system ontology, these extensions augment MaSE to include domain 

representation.  The extended MaSE is presented in more detail in Chapter IV. 

3.2.5 Alternatives to Ontologies 

One alternative to using ontologies for domain representation in multiagent systems is the use of 

Unified Modeling Language (UML) data models.  Although UML is a feasible alternative, it minimizes the 

benefit obtained by using the existing libraries of constructed ontologies and services for ontologies that 

currently exist in agent architectures, such as FIPA [FIPA TC B 2001].  In an open system environment, 

multiagent systems involve the interaction of agents that may not know anything about the domain 

representation of the other agents in the system.  FIPA provides an ontology lookup service that allows 

agents to request the ontology used by other agents.  The existing libraries and ontology lookup services 

allow for the agents to obtain knowledge about the domain representations and to allow them to 

communicate.  The use of ontologies for domain specification in this research enables these benefits, while 

such services or libraries are not widespread for sharing UML models. 

3.3 Geometric Score Reduction Model for Ranking Object Similarity 

Mapping the component ontologies to the system ontology can be a monotonous and difficult task.  

As the number of objects in the ontologies increase, the user must map and distinguish between more 
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objects.  To assist the user with this endeavor, this research developed an Information Retrieval ranking 

model that ranks the objects in the component ontology based on their similarity to a specified object in the 

system ontology. 

In Information Retrieval, a user needs a certain semantic content in a collection of documents.  

The ranking model of the information retrieval engine ranks the documents based on their similarity to the 

semantic content that the user is trying to find.  When mapping an object from an ontology, the user looks 

for the object that represents the same semantic meaning in the target ontology.  The Geometric Score 

Reduction Model developed in this research ranks the objects in the target ontology based on each object’s 

probability of representing the same semantic concept as the selected object.  The probability is set as the 

similarity score for the object and used to sort the objects from highest to lowest for presentation to the 

user. 

3.3.1 Determining the Similarity Score of an Object 

The ranking model uses the fact that the probability of two objects matching is the same as the 

probability that all characteristics of the objects match, represented by Equation 1.  The term match will 

represent the fact that two items (objects, properties, or characteristics) represent the same semantic 

concept in a domain.  This research considers the name, attributes and role of an object as appropriate 

characteristics to use when comparing objects.  Thus, the equation for computing the probability of 

matching objects is transformed, as shown in Equation 2. 
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If matching characteristics are considered independent from one another, the probability of the 

objects matching is computed as the product of the probabilities that each characteristic matches.  The 
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characteristics are clearly not independent, because if the names of the objects match, there is more chance 

that the other characteristics will match, too; however, the correlation between the events will be constant 

among each object compared in the target ontology, so we can ignore the correlation altogether.  Thus, the 

probability of two objects matching can be computed as shown in Equation 3.  Equation 4 shows the 

formula used by this research to compute the similarity of two objects based on their name, attributes and 

roles. 
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A number of factors must be considered when deciding the degree to which two characteristics 

match.  Even if two objects match, that does not necessarily mean the characteristics represent the exact 

same semantic concept in the domain.  For example, if the name Smoke was used by two objects, one 

object might represent the action of smoking while the other object might represent smoke from a fire.  

Similarly, if the characteristics do not match exactly, they can still represent the same concept.  An example 

is an object Class and an object Course used by two ontologies to represent the same concept.  When 

comparing the two names, the ranking model would not see an exact match, but the objects do match 

semantically.  As a result, the similarity value of two characteristics that do not match is set to a value that 

represents how important that characteristic is in defining the actual semantic representation of the object.  

For example, because designers can develop ontologies in different languages, such as French or English, 

the name of an object does not have an extreme importance on the semantic content of the object.  So, the 

similarity value for the name characteristic of two objects when the names are not exactly the same can be 

set to 40%, or some other coefficient above zero. 

The coefficients for the characteristics in the object similarity score were initially set based on the 

characteristic’s importance, when compared to the other object characteristics, in influencing the semantic 
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content of an object.  The coefficients are fined tuned, based on experiments with test data, so that the 

ranking model operates with the most precision.  The coefficients for each characteristic can be fine tuned 

for a specific collection of objects, or could be adjusted based on user-feedback, which is a future research 

area discussed in Chapter VII. 

Chapter V discusses the implementation of the ranking model, including a discussion on the 

characteristics of an object and why each one is or is not used in the ranking model.  The ranking model 

considers the attribute structure of an object as the most defining aspect in distinguishing the semantic 

content of one object from another object.  The algorithms used to compare the attribute structure of the 

objects are discussed in Chapter V. 

3.3.2 Evaluating Ranking Models 

Traditional methods of evaluating information retrieval models use the metrics of precision and 

recall.  A ranking model returns a set of documents, called the relevant set, from the collection of 

documents.  Using this set, the analyst determines the recall as the number of documents, deemed relevant 

by an expert, that appear in the set divided by the total number of relevant documents.  Recall, as shown in 

Equation 5, represents the percentage of documents accurately found by the ranking model.  Precision 

represents how many non-relevant terms are included in the relevant set.  The precision is the number of 

actual relevant documents in the set divided by the size of the relevant set, as shown in Equation 6. 

(5) 
DoucmentsRelevant ofNumber  Total

Returned DocumentsRelevant  ofNumber =R  

(6) 
Returned DocumentsofNumber Total

Returned DocumentsRelevant  ofNumber =P  

When mapping between data models, however, these metrics are not appropriate.  There is only 

one relevant object per query, so the recall is zero or one, based on whether or not the model returns the 

object.  Recall is useful in situations when there is more than one relevant document as a method of 

 42



 

 

illustrating how many of the relevant documents were returned.  With only one relevant document, recall is 

not as meaningful a metric. 

This research uses the rank of the relevant object as the metric for evaluating the Geometric Score 

Reduction Model.  This metric is meaningful in that it demonstrates the number of objects the designer 

must look at before finding the relevant object.  For example, when searching for a match for a Cat object, 

the ranking model returns the sorted list: Person, Car, Tuba, Feline, and Automobile.  The designer is 

looking for the relevant object of Feline, which is ranked fourth by the ranking model.  Recording the rank 

as a metric shows that the user must look at four objects before finding the relevant one.   

Time is another consideration when evaluating ranking models.  For example, a ranking model 

might be 100% accurate, but take four days to execute.  This is not acceptable for use when mapping 

between data models.  As such, Chapter VI evaluates the Geometric Score Reduction Model based on the 

average rank of relevant objects and the time to rank the objects for three experiments. 
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IV. Extended Multiagent Systems Engineering 

Extended MaSE is a complete methodology for building multiagent systems that guides a designer 

through software development by describing the structure, behavior, and data model of the system.  This 

chapter describes the extended MaSE methodology in detail.  The sections of MaSE not modified are 

summarized from [DeLoach and others 2001] to present the whole methodology. 

agentTool automates the design of multiagent systems using the MaSE methodology.  To support 

extended MaSE, this research augmented agentTool with an ontology builder and mapper.  Also, the 

existing software now supports passing ontology objects between agents.  The functionality was added 

while maintaining the original workflow model of agentTool.  Following any modified MaSE step, this 

section discusses the changes made to agentTool to support the activities of that step. 

4.1 Capturing Goals 

The first step of MaSE captures the goals of the system, developing a structured set of goals from 

the initial system specification.  This involves identifying the goals and then structuring them into a 

hierarchy.  Goals are extracted from the system’s functional requirements, which specify the services the 

system must provide and the actions the system should perform.  MaSE uses goals as the basis of the 

analysis phase since goals are more stable than requirements that tend to change over time [Kendall and 

others 1998]. 

4.1.1 Identifying Goals 

To capture the goals, the analyst must first extract them from the functional requirements.  Goals 

represent what the system is trying to accomplish.  The designer must modify the functional requirements 

from a do this, do that type statement to the overall essence of what the system is trying to accomplish.  For 

example, in a distributed course scheduling system the designers determine the following goals: 
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• Produce Schedule 

• Display Schedule 

• Manage Existing Schedules 

4.1.2 Structuring Goals 

The goals are structured to show their sub-goal relationships with one another, based on the inter-

relationships and importance of the goals.  To aid user understanding, the Goal Hierarchy Diagram divides 

the goals into levels of detail and importance.  Figure 16 is an example showing a partial Goal Hierarchy 

from the course-scheduling example. 

 
Figure 16 Goal Hierarchy Diagram 

4.2 Applying Use Cases 

Once the goal hierarchy is complete, the analyst captures use cases from the system requirements 

and develops sequence diagrams to help identify an initial set of roles and communications paths in the 

system.  The use cases define scenarios that the system must handle, and sequence diagrams represent the 

use cases as events between roles in the scenarios.  The analyst will use these event sequences to define the 

tasks of the system roles. 
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4.2.1 Creating Use Cases 

Use cases are examples of how the user thinks the system should work.  The designer can develop 

use cases from the requirement specifications or by interviewing the system’s users.  This step identifies 

paths of communication, so the analyst should design use cases that cover varying event sequences, without 

repetition.  The use cases should not describe every sequence of events the system must handle, but should 

show how the system accomplishes each goal in the hierarchy. 

4.2.2 Creating Sequence Diagrams 

A sequence diagram depicts the sequence of events from the scenarios described in the use cases.  

Roles are created, based on the use cases, and placed at the top of the diagram.  Figure 17 shows an 

example sequence diagram, with the arrows between lines representing events passed between the roles.  

The order of events proceeds from the top to bottom, so to generate a schedule the Scheduler first passes a 

retrieve_requirements event to the RequirementsManager. 

 
Figure 17 Example Sequence Diagram 
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To transform the use cases into sequence diagrams, the analyst uses entities named in the use case 

as roles.  Any communication or information passing in the use case becomes an event in the sequence 

diagram.  This information passing also yields possible terms for the system ontology, developed next in 

the methodology. 

4.3 Developing the System Ontology 

This step represents the first addition made by this research to the original MaSE and uses 

concepts from the previous steps as a basis for constructing the ontology of the system.  The designer first 

determines the purpose and scope of the ontology and then collects and analyzes data from the information 

domain for possible use in the ontology.  Finally, the analyst constructs the initial ontology and refines, 

validates, and matures the model into a complete ontology. 

To support the ontology creation steps of MaSE in agentTool, this research built an ontology 

builder program and integrated it into agentTool.  The main window of agentTool contains tabs for each 

MaSE step.  This research added a tab for the system ontology after the sequence diagram tab, so that the 

order would match the steps of the Extended MaSE methodology.  The system ontology tab displays the 

metadata for the system data model and allows users to launch the Ontology Editor to modify or further 

view information about the ontology, as shown in Figure 18.  With this approach, the user can view a quick 

summary of the data model and can receive more detailed information if interested. 

The designer uses the ontology builder, shown in Figure 19, to view additional information or to 

edit the ontology.  The Ontology Editor program design is based on Protégé 2000 to shorten the learning 

curve of users that are accustomed to Protégé 2000 [Noy and others 2001].  The main window consists of a 

tree view of the objects in the data model, organized by their inheritance, and three tabs: Classes, Axioms, 

and Metadata.  Each tab contains the information regarding that section of the ontology.  Designers create, 

modify and view classes, slots, and axioms in this program. 
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Figure 18 Viewing System Ontology in agentTool 

 
Figure 19 Main Window of Ontology Editor 
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4.3.1 Define Purpose and Scope of Ontology 

Designers specify the purpose, scope, and general information regarding the ontology in the 

metadata tab of the ontology builder.  Figure 20 shows the metadata tab with an example ontology.  Each 

ontology has a unique identifier and the location on disk or the URL where the ontology can be found.  The 

metadata tab allows the user to describe the general purpose and description of the ontology and provide 

contact information. 

 
Figure 20 Metadata Tab in Ontology Editor 

By describing the purpose of the ontology, the designer limits its scope.  For example, when 

designing a multiagent system to perform course scheduling, the ontology must define classes regarding 

courses, quarters, instructors, classrooms, etc.  The software requirements and the goal hierarchy help 

define the purpose of the ontology, as the purpose of the ontology is to fulfill the information needs of the 

multiagent system.  The purpose describes why the ontology exists, such as to list all classes in the 
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education domain required when scheduling courses.  This description of the purpose determines the scope 

and the domain that the ontology will reside in.  The scope defines the level of detail to which the ontology 

describes the objects, such as defining only the semantic ideas necessary to schedule courses in a 

distributed network environment. 

To further define the scope, the designer can utilize the previously identified use cases to 

determine the types of data that the system will use.  For example, a use case may describe one agent 

passing another agent a specific course to schedule.  The designer uses this situation to determine the level 

of detail necessary to describe a course so that the system can execute the events described in the use case 

appropriately. 

4.3.2 Collect Data 

Having defined the scope, the analyst knows the level of detail and domain the ontology 

represents and can start building the model.  The designer first creates a list of possible terms that the 

ontology must contain.  Designers form this list by examining the goal hierarchy, use cases, and sequence 

diagrams from the previous MaSE steps.  In Figure 17, for example, the Scheduler role requests instructors, 

students, and resources in the system execution.  From this diagram, the designer knows that the ontology 

must include concepts to represent these items and adds their names to the list as possible terms for the 

ontology. 

4.3.3 Construct Initial Ontology 

This step takes the list of concepts and organizes them into classes and attributes and produces an 

initial draft of the data model.  When creating the ontology, the analyst must remember to only specify the 

concepts that the system needs to accomplish its goals.  The ontology should not specify all attributes of a 

Human, such as height, age and weight, when the system only requires the name of a Human to function. 
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4.3.3.1 Reusing Existing Ontologies 

The designer must first decide whether any existing ontologies will meet the system needs.  The 

user reviews ontology libraries and existing company data models looking for objects that resemble the 

concepts listed in the term list built earlier.  The benefit to using an existing ontology is that the system is 

interoperable, in terms of passing data, with any other system that uses the same data model.  If no existing 

ontologies fully specify the information needed for the system, the designer must build a new ontology.  If 

the designer finds an ontology that partially satisfies the system needs, that ontology can be used as a 

starting point for the new ontology.  Users should post created models in some shared repository so that 

others can reuse the data model, increasing the interoperability of future systems. 

4.3.3.2 Build Class Hierarchy 

The first step in the construction of an ontology from scratch creates classes from selected terms in 

the term list, created in the collect data step, and organizes the classes into a hierarchy.  The hierarchy is 

based on subclasses and every class is a subclass of Thing. 

Analysts can build the hierarchy using a top-down, a bottom-up, or a middle-out approach.  The 

designers start by selecting terms from the list that are independent objects.  In other words, they do not 

describe other objects.  The user must ask if the term represents a characteristic of another term or if the 

term is described using other terms as its characteristics.  For example, an Animal is an object while Age is 

an attribute of the object.  In a middle-out approach, the designer takes the terms and selects those thought 

to occur in the middle of the hierarchy, allowing the designer to increase detail while creating subclasses 

and abstract details while creating parent classes.  For example, to represent the similar attributes in an 

Instructor and Student class, the analyst can create a Person class as a parent class of both.  The designer 

can also further specify the Student class by creating a Part-time Student and Full-time Student subclasses.  

The hierarchy is complete once the designer identifies and structures all the objects needed by the system. 
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The main window of the Ontology Editor allows for the creation of classes.  The user can then 

specify information about the class by determining the role of the class, adding or removing inherited 

classes, and providing a description of the object. 

The Teacher class is displayed in Figure 19.  This is a concrete object with three attributes: Name, 

hasParents, and teachesCourses.  There are no axioms regarding this class in the ontology, since none are 

displayed in the axiom list. 

4.3.3.3 Add Attributes to Classes 

The analyst now defines the attributes (also known as slots) of the classes identified in the 

previous step.  The attributes should describe the properties of the class at the level of detail required by the 

system to accomplish its goals.  Each attribute is described in terms of its data value, name, description, and 

cardinality.  For example, a Person class has the attribute age.  The cardinality of the age slot is one and is 

required for every Person object. 

Designers use the Modify Slot window, shown in Figure 21, to view and modify the 

characteristics of an attribute in agentTool.  The user inputs the name and description of the attribute and 

chooses the data type from the drop-down box. 

 
Figure 21 Add/Modify Slot Window 
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The allowed values list displays the possible classes that can fill this slot.  If the data type is a 

string, integer, or float, this list is not displayed.  The user also specifies whether the slot is required and if 

there can be more than one instance to fill this slot.  In Figure 21, the slot hasParents is defined as a 

multiple slot that has at least two instances.  Users can add the slot’s inverse, such as hasChildren, if 

appropriate.  The Values and Default lists are not implemented at this time.  With the values list, users can 

specify instances of a class and with the default list the user can specify the default value of the slot.  This 

implementation does not support instances, as designers rarely hard code specific instances into the data 

model.  The lists are left in the window for future development, if necessary. 

4.3.3.4 Define Relationships 

The attributes of a class define the properties and relationships of the class.  This step encodes all 

necessary relationships between classes as attributes of the class.  For example, a Person owns a Car.  The 

designer can represent this relationship with an attribute of the Person hasCar, which is of type Car.  If the 

system needs to know the inverse of the relationship, the analyst uses an inverse slot.  The Car class would 

contain the slot hasOwner, with type Person, as the inverse slot of hasCar. 

4.3.3.5 Define Axioms 

Once classes and their attributes have been defined, the designer specifies the domain axioms.  As 

discussed in Chapter III, axioms can specify restrictions on the classes and attributes.  If the system requires 

any restrictions on the data that cannot be represented by the attribute characteristics, the designer must 

develop the appropriate axioms.  Using a banking system as an example, an Account class will have an 

attribute balance.  The value of this field can never be less than zero.  To represent this in the ontology, the 

designer constructs an axiom BalancesMustBeGreaterThanZero, which states that balance of the Account 

must be greater than or equal to zero at all times. 

The axioms tab, shown in Figure 22, allows for the creation and deletion of axioms in the 

Ontology Editor.  The program organizes the axioms by their type: Equivalence, Covered, or Disjoint.  
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Users can view selected axioms in the right panel of the window.  Figure 22 shows the axiom that defines 

when a person is considered old.  The axiom concerns the Person class and contains a short description and 

the statement that a person is old if the value of the age slot is greater than 65. 

 
Figure 22 Axiom Tab in Ontology Editor 

4.3.4 Refine and Validate Ontology 

Once the designer defines the classes, attributes, and axioms of the ontology, he must validate that 

the ontology meets the system requirements.  Any missing information is added to the ontology, and any 

extraneous information is removed from the ontology.  If any information is incorrectly specified, the 

designer makes the necessary corrections to the ontology.  To validate the model, the analyst examines the 

situations described in the use cases and sequence diagrams to ensure that the ontology describes all the 

information needed in those scenarios. 

This step is repeated throughout the development of the system.  If at any time the designer 

realizes that some piece of information is missing from the ontology, the ontology is modified to include 
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this information.  The ontological construction is complete once the analyst is satisfied that the ontology 

represents all the necessary information from the sequence diagrams and use cases. 

4.4 Refining Roles 

The last step in the analysis phase of MaSE, Refining Roles, transforms the goals and sequence 

diagrams into roles and tasks.  Roles form the foundation for agent classes in the Design phase, and each 

role is assigned at least one goal from the Goal Hierarchy Diagram.  The analyst can combine related goals 

into a single role for efficiency, if desired. 

4.4.1 Creating Roles 

The analyst must take the initial set of roles developed from the sequence diagrams and assign 

goals to them from the goal hierarchy.  Then, the designer adds roles for each goal that does not have a role 

assigned to it.  In this manner, the analyst ensures proper system execution by assigning every system goal 

to a role.  Once every goal is assigned to a role, the analyst must look at how that goal is accomplished in 

the system.  If a role exists that does not have a goal, it is either superfluous and can be removed or a goal 

is missing from the hierarchy.  The analyst must decide which is the correct action to take. 

4.4.2 Concurrent Tasks 

Once roles have been created, the analyst designs tasks to describe the behavior necessary for the 

role to accomplish its goals.  An example of roles and their tasks is shown in Figure 23.  The roles are 

represented in the boxes along with the numbers of the goals assigned to it.  Tasks are shown in ovals 

attached to the role they belong to.  The arrows show the flow of communication between the tasks.  Each 

task is a single thread of control and is represented graphically using a Concurrent Task Diagram, an 

example of which is shown in Figure 24. 
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Figure 23 Example Role Diagram 

The Concurrent Task Diagram is a finite state automaton representing the role’s behavior 

throughout the task.  The transition between states uses the syntax trigger [guard] ^ transmission(s).  The 

trigger portion specifies what event can allow the transition to occur.  If a guard is specified, not only must 

the trigger event occur, but the guard statement must also evaluate to true before a state transition occurs.  

Upon the transition, the event transmission(s) will occur.  This event frequently involves sending messages 

to other tasks.  In Figure 24, the reception of an abort message from another role enables the first transition.  

The abort message contains a single parameter named schedule.  Previously, MaSE required only the name 

of the parameter.  Now with the inclusion of the information domain, each parameter lists the name and 

data type.  The analyst uses the system ontology to specify the types of the parameters.  Upon receiving the 

abort message, the role will send a message to resourceManager.  The message will have the request to 

unscheduleClassrooms and it includes the schedule that the system is erasing. 
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Figure 24 Example Concurrent Task Diagram 

The analyst can use sequence diagrams as an aid in constructing concurrent task diagrams.  

Sequence diagrams describe the minimal set of messages necessary to complete the various scenarios.  The 

analyst can take the messages received by the role in the sequence diagrams and ensure they are in a 

concurrent task diagram for that role to accomplish the scenarios.  The Analysis phase is complete once 

concurrent task diagrams have been provided to describe how each role will meet its goal. 

4.5 Creating Agent Classes 

The first step in the Design phase creates agent classes from the roles in the Analysis phase.  This 

step defines agent classes in terms of the roles they will play and their conversations.  To ensure the system 

functions appropriately, each role must be assigned to at least one agent class.  Once roles are assigned to 
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agent classes, the analyst can determine the conversations between agent classes by consulting the Role 

Model diagram.  

The Role Model diagram, as shown in Figure 23, defines the tasks of each role and the 

communication between tasks.  These communications must be assigned to the corresponding agents.  If 

two agents contain tasks that communicate in the Role Model diagram, there must be a conversation 

between the two agents.  Figure 25 is an example Agent Class Diagram.  Each box contains the name of the 

agent and the roles of the agent.  In Figure 25, the UserAgent fulfills the roles Scheduler and 

OutputManager.  From the Role diagram in Figure 23, the communication between the GenerateSchedule 

task and the FreeScheduleResources task is represented as the conversation abortSchedule in the Agent 

Class Diagram between the agents that play the roles Scheduler and ScheduleManager. 

Following through this transformation from the task communication in the role diagrams, the 

analyst can identify the necessary communication between agents.  Once the Agent Class Diagram is 

complete, the designer has identified the agents and the conversations in the system. 

 
Figure 25 Example Agent Class Diagram 
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4.6 Constructing Conversations 

Now that the conversations are identified, the analyst must specify the behavior of each 

conversation.  This step describes the details of all system conversations in terms of a finite state 

automaton.  Each conversation consists of two Communication Class Diagrams, one for the initiator and 

one for the responder of the conversation.  The diagrams describe the communication states of the two 

agent classes participating in the conversation.  The syntax for a transition in the Communication Class 

Diagram is:  

rec-mess(args1) [cond] / action ^ trans-mess(args2) 

A transition is enabled when the agent receives the message rec-mess with the parameters args1 

and the guard condition cond holds.  Similar to the transitions in the Task Diagrams, this research modifies 

MaSE so that the parameters for messages have the syntax name:Type, where name is the name of the 

variable and Type is the class type from the system ontology.  When the transition is executed, the agent 

will perform the specified action and transmit the message trans-mess with the arguments args2.  Every 

field in a transition is optional. 

Figure 26 is an example of the Communication Class Diagram for the initiator of the 

retrieveSchedule conversation.  The agent sends the message retrieveSchedule to request the schedule for a 

specific course type and then waits for the schedule to be returned by the other agent.  This response comes 

in the form of the message returnSchedule, with the requested schedule as the parameter sched. 

 
Figure 26 retrieveSchedule Conversation Initiator 
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Figure 27 shows the responder Communications Class Diagram for the same conversation.  The 

conversation starts when the agent receives a request to retrieve the schedule.  The agent then returns the 

schedule to the requesting agent. 

 
Figure 27 retrieveSchedule Conversation Responder 

Designers construct conversations based on the tasks developed in the Concurrent Task Model.  

Each task that defines external communication will yield at least one conversation.  The analyst can trace 

through the task model to ensure that messages sent and received in the task model correspond to those in a 

conversation. 

4.7 Assembling Agent Classes 

This step adds the internal details to the agent classes identified in the Creating Agent Classes 

step.  Designers can choose an existing architecture, such as Belief-Desire-Intention [Georgeff and others 

1996], or can develop their own.  Once the architecture is built, the designer specifies the components of 

each agent in the Agent Architecture Diagram. 

Figure 28 is the Agent Architecture Diagram from the UserAgent class in the example.  Four agent 

components combine to form this agent class.  Each box represents one component and contains a list of 

the attributes and methods of the component.  The lines represent internal communication, such as method 

calls, between the various components.  In Figure 28, the GenerateSchedule component must communicate 

with the DisplaySchedule component to display the schedule once it is complete. 
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Figure 28 Example Agent Architecture Diagram 

Designers can describe the internal behavior of the components with state-diagrams and formal 

definitions for the operations.  Complex components may even have sub-components.  One typical agent 

architecture defines a component for each task the agent performs.  In this manner, the behavior of the 

agent is compartmentalized by tasks. 

4.7.1 Special Case -- Specifying Agent Component Ontologies 

Agent components will typically use the system ontology defined in Step 3, however, there are 

cases when the components will use a separate ontology.  This research extended MaSE to accommodate 

these occasions.  The first case occurs when the system interacts with a legacy system, such as an existing 

database.  The multiagent system data model frequently will not match the legacy system’s model.  The 

agent component that interfaces with the legacy system must use the ontology of the legacy system.  The 

designer can then provide a mapping from the legacy system’s model to that of the multiagent system, with 

the component responsible for translating between the two models. 

The second case occurs when an agent component is reused from a previous system.  The reuse of 

agent components is similar to Component Based Software Engineering.  Designers can build components 
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to provide frequently needed services, which can then be built into future systems.  Each component is 

designed with its own ontology that is then integrated into the systems.  The developer must map the 

component data model to the system model to ensure proper performance.  The data model for reusable 

components should be much smaller than the system data model.  As discussed in Chapter III, a small 

ontology aids reuse because the domain representation acts as a type of precondition for the proper 

execution of the system.  With a smaller ontology, there are fewer conditions that future systems must 

obey.  Only the information required by the component is specified in its data model. 

Designers create component ontologies in the same manner as system ontologies.  Using 

techniques discussed in Section 4.3, the analyst can fully specify the component ontology. 

4.7.1.1 Mapping Component Ontologies to the System Ontology 

The analyst must provide a mapping for any component ontology that does not match the system’s 

ontology.  During implementation, the programmers use these mappings to create translators, or other 

similar programs, to convert the data between the models.  In distributed systems, this is frequently called 

marshalling the data.  Each attribute and class in the component ontology should be paired to an attribute or 

class in the system data model.  This ensures the multiagent system will convert data appropriately when 

passed between the agents. 

Component ontologies are mapped to the system ontology to reduce the number of mappings.  An 

alternative is to map the data model of each component to every component it interacts with.  The problem 

with this approach is it increases the number of mappings required.  If each component interacted with 

every other component, this could result in n! mappings for n agent components.  Instead, the system data 

model is used as the universal language for the components to reduce the number of mappings in the 

system. 
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4.7.1.2 Component Ontologies in agentTool 

In MaSE, agent components may have different data models than the system.  To support this 

capability, this research augmented the Agent Architecture Panel in agentTool to allow the user to add, 

delete and modify component ontologies. 

Designers can set the component ontology to the system ontology or to another ontology.  The 

developer can also edit the component ontology directly from this panel with the appropriate menu 

selection.  When adding attributes to the components, users may choose from the object types in the 

specified ontology.  If the component ontology is different than the system ontology, the user must map the 

component ontology to the system ontology. 

4.7.1.2.1 Mapping Ontologies 

Designers map the ontologies in agentTool through the Ontology Mapper program.  This program 

displays the component ontology in a tree structure on the left side of the panel, as shown in Figure 29.  

The mapper displays the slots of the selected object in the list below the ontology.  When the user selects a 

slot in the component ontology, the program ranks the objects in the system ontology based on the ranking 

model discussed in Chapter V.  The mapper program then lists the ranked objects in the suggested class 

mapping list, as shown in Figure 29. 

In the center of the window, the mapper program displays the existing mapping for the selected 

object.  If the user selects any slots from the object, the existing mapping for that slot is displayed in the 

lower middle of the window.  The program displays the class and slot the attribute is mapped to, as slots 

from the same object may be mapped to different classes in the system ontology.  This occurs when the 

designer represents an object in the component ontology as two or more objects in the system data model.  

The user can modify the mappings of objects and slots by selecting the class and slot desired in the system 

ontology and pressing the appropriate button.  The program suggests candidate objects based on the 

similarity values returned by the ranking model. 
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Figure 29 Ontology Mapper 

4.8 System Design 

The final step in the MaSE methodology instantiates actual agents from the agent classes defined 

in earlier steps.  The Deployment Diagram shows the numbers, types and locations of the agents in the 

system, as shown in Figure 30.  The shadowed boxes represent the agent instances and describe the agent 

name and type.  The dashed lines in the diagram represent a single computing platform.  In our example, 

none of the agents execute on the same platform.  The SchedManager and ResManager reside on dedicated 

servers and the UserAgents can be on multiple machines.  The solid lines represent the communication 

between the agents and platforms. 

Designers use the Deployment Diagram to describe the location of agents so that information such 

as the hostname or network address of the platforms can be specified for implementation.  The Deployment 

Diagram allows for multiple configurations of the multiagent system, giving designers the flexibility to 

adapt to various sets of resources.  For example, if network bandwidth is limited, the designer should place 

as many agents as possible on the same platform to reduce network communication.  This must balance 
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with the fact that each agent requires a different amount of processing power and the designer must not 

overload individual platforms.  Using the Deployment Diagram, the analyst can balance network 

communication with processing limitations of individual platforms.  Upon completion of this step, the user 

is finished with the multiagent system design, having analyzed and designed the behavioral, structural and 

information models of the system.  The development team must now code the system based on the design 

documents. 

 
Figure 30 Example Deployment Diagram 

4.9 Code Generation 

agentTool generates Java code for the multiagent system based on the design documents created 

from the MaSE steps.  This research modified the code generator so that agentTool produces Java code for 

every class in the ontology.  These classes are then used by the agent code to pass messages in the system, 

as described in the MaSE design.  The resultant code provides a shell for the agents consistent with the 

developed data, structural and behavioral models. 
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V. Geometric Score Reduction Model 

5.1 Computing the Similarity of Objects 

As discussed in Chapter III, this research uses the characteristics of the objects to compute the 

similarity of one object to another.  A significant part of developing the ranking model is to determine 

which characteristics should be used.  The decision of whether to include a characteristic in the similarity 

equation is based on how significant the characteristic is in defining the semantic content of the object.  

This section discusses the inclusion of the characteristics of an object, as shown in Table 1, in the similarity 

equation for comparing objects. 

Characteristic Included or Not Included in Ranking Model 

Name Included 

Attribute Structure Included 

Role (Concrete or Abstract) Included 

Number of Children Not Included 

Number of Axioms Not Included 

Number of Parents Not Included 

Level in the Object Hierarchy Not Included 

Description Not Included 

Table 1 Object Characteristics and Their Use in the Geometric Score Reduction Ranking Model 

5.1.1 Object Characteristics Used by the Model 

The similarity score of an object is calculated using Equation 7.  Equation 7 is originally presented 

in Chapter III as Equation 4 and is reprinted here for review.  The ranking model uses the characteristics in 

the equation to rank the objects in the most precise manner possible.  To obtain a precise ranking, the 

characteristics chosen for the equation must have a significant impact on the underlying semantic content 
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the object represents.  The attribute structure, name, and role characteristics of an object all meet this 

requirement. 
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Attribute Structure.  This research considers the attribute structure the most distinguishing 

characteristic of an object.  In other words, if the attributes of two objects match, there is a good chance the 

objects represent the same content.  There are cases when one designer may choose to include more 

attributes of the object than the other designer.  In this case, the ranking model will identify the attributes 

that do match and will penalize the similarity score because not all objects match.  Using the attribute 

structure, either in a best-value or comparator method, the ranking model can obtain an effective similarity 

score.  Section 5.2 discusses these two methods of attribute comparison in greater detail. 

Role.  To further differentiate between objects, the ranking model compares the roles of the object.  

As discussed in Chapter III, the role of an object signifies if the class is abstract or concrete.  If one object 

is concrete and the other abstract, the ranking model reduces the similarity score.  Including this 

characteristic introduces the assumption that designers will design similar objects with the same role.  This 

is an appropriate assumption under most circumstances.  Because an abstract class cannot be instantiated, 

designers will represent abstract concepts as abstract classes.  So, if the roles of two objects do not match, 

they are not likely to match semantically. 

Name.  The ranking model compares the names of the objects to differentiate between objects that 

match in attribute structure and role characteristics but do not represent the same semantic idea.  For 

example, a class Person contains an Age attribute and a class Dog contains an Age attribute.  Both classes 

are concrete, and without comparing the names, the ranking model would indicate that the objects are 

similar.  So the ranking model reduces the similarity score when the names of the objects do not match.  

The fact that the names of two objects do not match does not mean that the objects do not represent the 

same content, so the penalty for names not matching should not be large. 
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Currently, the ranking model performs a string comparison to determine if the names match.  A 

future enhancement could include a thesaurus to look for similar words that match based on a lookup in the 

thesaurus. 

5.1.2 Object Characteristics Not Used 

This research designs the ranking model for mapping from one data model to a larger data model.  

The ranking algorithm works for data models with a similar number of objects, but the algorithm does not 

include characteristics that might improve the precision of the model when used on similar sized 

ontologies.  The characteristics not used in the similarity equation are either inappropriate when mapping 

from a data model to a larger one or are too computationally intensive when evaluating the possibility of a 

match.  Each characteristic is described below along with why the ranking model does not use it in the 

computation of the similarity equation. 

Number of Children.  The number of objects that inherit from the object, also known as the 

number of children of the object, would be an appropriate characteristic to compare if the ontologies were 

the same size.  In the case of system design, where the system data model will typically contain more 

objects than the component data model, this characteristic is not appropriate.  For example, the component 

data model might contain an object Airplane while the system data model has an object Aircraft.  Aircraft 

has Fighter Aircraft and Support Aircraft as children, while Airplane has no children.  This can happen 

when the component is a take-off manager component that only cares that the object is an aircraft in order 

to handle it taking off.  Because the system data model will frequently contain more detailed information 

than the component ontology, the number of child objects of a class is inappropriate for computing the 

similarity function in the ranking model. 

Number of Parents.  The number of objects that the compared objects inherit from, or number of 

parents of the objects, is similarly not an adequate characteristic for inclusion in the similarity equation.  

The system data model will contain more objects, and as the number of objects increases, the probability of 

additional parents for the objects in the system data model increases.  Also, since most objects will 
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normally only have one parent, this characteristic will rarely not match the same characteristic of another 

object.  As such, the inclusion of the number of parents into the similarity equation would rarely influence 

the results of the model. 

Number of Axioms.  Comparing the axioms that pertain to the selected objects could improve the 

precision of the results from the ranking model, but the comparison is a difficult task.  If all axioms are in 

first order logic, the ranking model could determine if the axioms regarding each object are contradictory.  

If so, the objects are not similar and the similarity score can be set to zero.  The ranking model does not 

perform this check due to the complexity of the logic inferences, such as keeping track of all the possible 

assignments between which variables might correspond to the variables in the other axioms.  This step 

alone could take as long as the computation of all the other characteristics combined.  As such, it is left as a 

possible addition in the future. 

Description.  The description of each object is difficult to compare.  Designers will not write the 

descriptions exactly, so a simple string matching does not work.  One of the most accurate comparisons 

treats the description fields as two documents and computes the similarity of the two.  The ranking model 

would use a thesaurus to ensure similar words are included.  The model would add synonyms of words in 

the descriptions and then compare the two.  The number of words contained in both divided by the total 

number of words is the similarity of the description fields.  This additional computation will have minimal 

impact on results, however, as designers frequently leave this field blank due to their impression that the 

semantics of the name and attributes of the object fully describe the object.  This creates problems when 

comparing a data model that has descriptions with one that may or may not have descriptions as objects 

that match might be penalized if one of them does not contain a description.  The ranking model does not 

use the description field for all of these reasons. 

5.2 Comparing the Attributes of the Objects 

As discussed in the previous section, the ranking algorithm uses the attribute structure as part of 

the similarity score between two objects.  To compute the level of similarity in the attribute structure, the 
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algorithm must compare the attributes in some manner.  When comparing the attribute structure, the ideal 

outcome would determine the optimum matching of attributes that maximize the similarity score, finding a 

set of attribute pairs where each pair consists of an attribute from each of the objects and every attribute 

appears in exactly one pair.  The similarity value of each pair is computed using the ranking model 

discussed in Section 5.2.1.1.  The optimal set would maximize the sum of the similarity values of the pairs. 

Finding the optimal matching is a combinatorial problem that takes a non-polynomial amount of 

time to compute.  Thus, an approximation must be found such that the running time of the model remains 

polynomial while the ranking results remain accurate. 

To improve running time, the ranking model algorithm compares the attributes in one of two 

ways.  The first method simply pairs each attribute from the mapped object to the attribute of the target 

object that has the highest similarity value.  However, this method can allow attributes to appear in more 

than one pair.  This relaxed restriction yields a polynomial time algorithm for the ranking model.  The 

second method for comparing attributes is to sort the list of attributes from each object in a pre-defined 

order and then compare them one-to-one.  The algorithm keeps track of the number of matching attributes 

and computes the score based on the number of matches. 

5.2.1 Assigning the Best Value 

Relaxing the requirement that the model ensures each attribute is mapped to only one other 

attribute simplifies calculation.  The model compares each attribute to those of the other object and assigns 

it to the attribute that maximizes the similarity score.  The model must consider several problematic 

situations with this best-value approach in order to maintain good performance. 

The first situation is when the attributes of the mapped object match a subset of the attributes of 

the target object.  In this case, the model could return that attributes match up exactly while there exist 

attributes that do not match up.  Figure 31 is an example of this situation.  Attributes 1-3 each obtain the 

best similarity score when paired with Attribute A.  If each attribute received a perfect score match with 
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Attribute A, the ranking model would return a perfect score.  To avoid this problem, the ranking model 

looks for the best mapping for each of the attributes of the mapped object and for each of the target object. 

Attribute 1

Attribute 2

Attribute 3

Mapped Object

Attribute A

Attribute B

Attribute C

Target Object

Attribute 1

Attribute 2

Attribute 3

Mapped Object

Attribute A

Attribute B

Attribute C

Target Object

 
Figure 31 Imperfect Object Match with One-Way Mapping 

By comparing the mapped object and the target object to each other, the model avoids returning a 

perfect score because the values obtained from Attributes B and C when compared to the attributes from 

the mapped object will not return a perfect score.  The ranking model determines the similarity of the 

attributes by looking at the values in a bi-directional mapping. 

Even though a bi-directional mapping improves the precision of the ranking model, the number of 

attributes must also be considered.  If the ranking model did not consider this, it could return a perfect 

match for the situation illustrated in Figure 32.  In Figure 32, each attribute can be matched to one in the 

other object, but multiple attributes are matched to the same object.  Because there are more attributes in 

the mapped object, however, the target object is not an exact match. 

The ranking model adjusts the similarity scores of the attributes to prevent the situation in Figure 

32 from receiving a perfect score.  The ranking model multiplies the probability that the attributes match by 

the ratio of the number of attributes in each object.  For example, if one object had five attributes and the 
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other had four, the model multiplies the score by 4/5.  The ratio is always less than or equal to one, so that 

it never raises the score. 

Attribute 1 

Attribute 2 

Attribute 3 

Attribute 4 

Attribute 5 

Attribute 6 

Mapped Object 

Attribute A

Attribute B 

Attribute C 

Target Object 

 
Figure 32 Imperfect Object Match with Two-Way Mapping 

The benefit of comparing the attributes using the best-value method is that the model can consider 

partial matches.  A mapped attribute does not have to match exactly to be considered into the score.  This 

allows for the possibility that designers may decide to represent two attributes that are semantically the 

same in different ways.  For this benefit, the ranking model makes additional calculations to ensure the 

problems discussed earlier, lack of a bi-directional mapping and differing numbers of attributes, do not 

improperly influence the score of the object.  To decrease the number of calculations, the ranking model 

could choose to only evaluate exact matches, instead of the partial matches considered with this method. 

5.2.1.1 Determining the Similarity Score of an Attribute 

As mentioned in the previous section, the best-value approach sets the mapping for an attribute to 

the attribute in the target object to which it is the most similar.  The approach uses a ranking model to 

determine the similarity score of one attribute to another in order to determine the most similar attribute. 

The mathematical foundation of this model is analogous to that of the model for object 

similarities.  The probability that an attribute matches another is approximately the probability that each of 
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the characteristics of the attribute match.  So, the equation used to compute the similarity value of two 

attributes is the same as Equation 3, with attribute substituted for object.  Section 5.3 discusses the 

characteristics of attributes and why each was or was not chosen to compute the similarity of the attributes. 

5.2.2 Comparing Attributes Using an Ordering  

An alternative method to comparing attributes is to develop a comparator that takes two attributes 

and returns whether they are equal or if one is greater than the other.  The ranking model uses fewer 

comparisons with this method, however this method relies on some assumptions regarding how the 

designers develop ontologies. 

This method orders the set of attributes in a sequence of increasing order, based on the results of 

the comparator.  When comparing the attributes of the object, the ranking model retains a pointer into the 

sequence of attributes for each object.  The pointers act as placeholders in the sequences for comparison.  If 

the attributes match, the score for the attribute comparison increases and both pointers increment.  

Otherwise, the pointer of the smallest attribute advances to the next attribute in its sequence.  Figure 33 

illustrates the possible situations and the resulting pointer modifications. 

 

 
Figure 33 Possible Situations When Comparing Attributes With an Ordering 
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In Figure 33(a), attribute AC is less than attribute A2, so the pointer moves to AD.  The 

subsequent comparison would then be between A2 and AD.  In Figure 33(b), the attributes are equal, so 

both pointers are incremented.  Finally, Figure 33(c) illustrates the process when A2 is less than AC.  The 

pointer is incremented so that the next comparison will compare attributes A3 and AC. 

Comparing the attributes in a sorted order reduces the number of comparisons needed to compute 

the similarity of the attributes.  In this method, the number of comparisons between the attributes of each 

object is O(n+m), where one object has n attributes and the other has m attributes.  Since the ranking model 

orders the attributes into a sequence, the total running time must include the sorting algorithm.  If an 

O(nlogn) search is used, the overall comparison of the similarities of the attributes is O(nlogn + mlogm + m 

+ n) which can be reduced to O(plogp), where p is the larger value of n and m.  This running time is better 

than the O(nm) running time of the best-value approach. 

Although this method provides for faster computation, it does not allow for partial matches.  The 

attributes have a strict ordering and the development of the comparator requires a decision on what 

constitutes equal attributes.  The answer to this question depends on what assumptions are made about the 

designers of ontologies. 

The ordered ranking model will use a strict and a loose comparator.  The loose comparator simply 

compares the data type of the attributes.  If the data types match, the comparator returns that the attributes 

are equal; otherwise, the comparator uses a pre-defined ordering on the data types to return which attribute 

is larger.  One problem with this approach, however, is that an attribute such as children’s_ages could be 

returned equal to Age because both are represented as integers, while they do not represent the same 

attribute. 

The strict comparator attempts to reduce this error by first comparing the data types and then 

comparing the other characteristics of the data type.  By using the other characteristics, the comparator 

attempts to eliminate false matching.  The underlying assumption for the strict comparator is that designers 

of ontologies will specify the characteristics of the attributes identically when representing the same 
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semantic content in the domain.  In the above example, the strict comparator will not return Age equal to 

children’s_ages because Age is a single attribute while children’s_ages can have multiple values. 

5.3 Computing the Similarity of Attributes 

Similar to the characteristics the ranking model uses to evaluate the similarity between objects, the 

ranking model only uses some of the characteristics of an attribute to compute the similarity between 

attributes.  Table 2 provides a summary of attribute properties along with whether the ranking model 

includes each in the computation of the attribute similarity score. 

Characteristic Included or Not Included in Ranking Model 

Name Included 

Data Type Included 

Required Attribute Included 

Multiplicity Included 

Description Not Included 

Table 2 Attribute Characteristics and Their Use in the Geometric Score Reduction Ranking Model 

5.3.1.1 Attribute Characteristics Used by the Model 

Name.  The ranking model uses the attribute’s name field in a similar manner to the name field of 

an object.  The name is a way of improving the scores of attributes that have similar names, while not 

heavily penalizing the scores of attributes that do not match on their name characteristic.  A case insensitive 

string comparison is used to determine if the names match. 

Data Type.  This research considers the data type of an attribute to be the most distinguishing 

feature when comparing attributes.  If the data types do not match up, there is not a high probability that the 

attributes represent similar semantic ideas.  To allow for the possibility that one designer may represent an 

attribute as a float while another designer chooses to use an integer, the ranking model reduces the 

similarity score of the attributes based on what the two data types are.  For example, if one attribute is an 
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integer while the other attribute is of a type Class, defined elsewhere in the data model, the ranking model 

will set the similarity score to zero.  This is because the probability that designers might switch these two 

data types is low.  When comparing a float to an integer, however, the ranking model will reduce the score 

less than the previous example, as it is more likely for designers to interchange floats with integers than 

floats with Class objects.  Through this method, the ranking model allows for the possibility that attribute 

types might be represented differently by designers, while ensuring perfect matches still receive the best 

similarity score. 

Required Attribute.  A required attribute must be contained in every instance of an object.  This 

is a significant characteristic that the ranking model uses to decrease the scores of those attributes that do 

not match exactly.  The ranking model only penalizes the similarity score by 35% for a non-match, because 

designers may choose to represent an attribute as required while another would not. 

Multiplicity.  An object can have an attribute that contains multiple instances.  The ranking model 

uses this important characteristic in computing the similarity score.  If one attribute can be multiple and the 

other cannot, there is a low probability that the attributes represent the same semantic content.  If the 

attributes do match, the ranking model compares the minimum number required and the maximum number 

of instances allowed.  The ranking model reduces the similarity score of the attributes if either one or both 

of these sub-characteristics do not match.  The penalty for each is less than the penalty for the multiplicity 

characteristic not matching. 

5.3.2 Attribute Characteristics Not Used by the Model 

The ranking model does not use the description field of an attribute for the same reason the 

description field is not used for computing the similarity of objects.  The difficulty in accurately 

determining the similarity of this field outweighs the benefits from including this field into the similarity 

calculations. 
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VI. Results 

This chapter discusses the evaluation of the additions to MaSE and the performance of the 

Geometric Score Reduction Model based on the measurement criteria defined in Chapter III.  The first part 

of the chapter evaluates the use of ontologies to represent the information domain.  The second part then 

compares the MaSE extensions to the criteria for using information domain specifications in multiagent 

system specifications.  The final section evaluates the precision and time performance of the Geometric 

Score Reduction Model under various operating conditions. 

6.1 Evaluation of Ontologies for Domain Representation 

The characteristics and structure of ontologies described in Section 3.2.1 satisfy the requirements 

for an information domain representation in multiagent systems discussed in Section 3.1.1.  Table 3 

summarizes the requirements from Section 3.1.1 along with the ontological component that satisfies the 

requirement.  The satisfaction of each requirement is discussed below. 

Domain Representation Requirement Satisfying Ontology Component 

Define and Describe Objects used by the system Classes 

Specify Properties of the Objects Slots 

Specify Relationships between the Objects Slots 

Specify Axioms Regarding the Objects Axioms 

Specify Domain Metadata Metadata 

Clear, Concise, Consistent Clear, Concise, Consistent 

Only Specify Required Information Complete 

Table 3 Domain Representation Requirements and the Ontological Components that Satisfy Them 

Define and Describe the Objects used by the system.  The Class structure in an ontology defines and 

describes the objects in the domain.  The structure allows for the object to have a name and a description of 

what the object represents. 
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Specify Properties of the Objects.  Class objects can have multiple Slots.  The Slots describe the 

properties and attributes of the object.  For properties, the Slot can be named has_property to illustrate that 

an object has a particular property.  The description of the slot allows the designer to explain the property 

even further. 

Specify Relationships between the Objects.  The Instance type of Slots can be used to specify 

relationships among objects.  The instance defines a relationship by its name and description.  The allowed 

values of the Slot can specify the other objects involved in the relationship.  For example, the relationship 

works_for can be defined between a Worker class and a Manager class.  The Worker class has an instance 

slot named works_for.  The allowed values of the slot are instances of the Manager class.  In this manner, 

using Slots with the type Instance allows the designer to specify relationships among objects in the domain. 

Specify Axioms Regarding the Objects.  This requirement maps directly to the axioms in an ontology. 

Contain Metadata about the Domain.  The domain representation must contain basic information about 

the purpose for which the representation was designed.  Similarly, ontologies require the same information 

to facilitate future reuse.  This desire for reuse in both ontologies and multiagent systems requires designers 

to document their projects well to allow for greater understanding in the future.  Ontologies and multiagents 

systems both require a name, designer names, description, version number, etc.  The metadata required for 

an ontology meets all the requirements for a domain representation. 

Clear, Concise and Consistent.  This requirement matches perfectly with the characteristics of an 

ontology.  Both multiagent systems and ontologies are designed for future reuse and predictable results, so 

these characteristics are required in each.  They ensure that the system or ontology can be understood in the 

future and that neither can produce inconsistent or undesired results. 

Only Specify Information Necessary for System Execution.  In a domain representation, it is important 

that the designer only specify the minimum requirements necessary for proper execution of the multiagent 

system.  With ontologies, designers are often told “The ontology should not contain all the possible 

information about the domain:  you do not need to specialize (or generalize) more than you need for your 
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application” [Noy & McGuinness 2001].  The ontology should be complete to the level of granularity 

specified in the metadata for the ontology, so for multiagent systems the designers can set the granularity to 

that required for the proper execution of the system being designed.  This requires the designer to describe 

what type of multiagent system is under development to allow future reviewers to understand the purpose 

for which the ontology was built.  By setting the level of granularity of the ontology appropriately, 

ontologies ensure that only the minimum amount of information required for proper system execution is 

specified. 

6.2 Evaluation of the Use of the Information Domain in Extended MaSE 

Chapter III also defined requirements for using the information domain in multiagent systems 

development, and this section discusses the extensions to MaSE and how well they meet the requirements 

described in Section 3.1.2.  Table 4 summarizes the criteria and whether extended MaSE fulfills them.  The 

table also specifies whether Gaia and MESSAGE, the two other multiagent systems engineering 

methodologies discussed in Section 2.2.2, fulfill these criteria. 

Domain Representation Requirement Met by 
Extended 

MaSE 

Met by Gaia 
Methodology 

Met by 
MESSAGE 

Allow for Specification of the Information 
Domain 

Yes No Yes 

Specification Should Occur Before Designing 
any Information Sharing in the System 

Yes No Yes 

Allow Designer to Specify Objects to Pass 
between Agents 

Yes No Yes 

Allow for Agent Data Models Yes No No 

Allow Designer to Specify Relationships 
between Data Models 

Yes No No 

Table 4 Criteria For Using Information Domain in Multiagent Systems Design 

As one of the first agent oriented methodologies, the developers of Gaia address the behavior of 

agents that make the system development different from traditional software development.  The resulting 
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documents describe variables, but the methodology does not discuss how to specify the type of variables or 

the specification of the information domain.  This development is left to the user, in a manner similar to the 

low-level design, as discussed in Section 2.2.2.1. 

Section 2.2.2.2 discussed how MESSAGE uses a domain view to represent the information 

domain of the system.  This view is developed in parallel with the behavioral and structural models.  This 

parallel development allows the user to modify the information domain specification to include any object 

found to be necessary while designing the structural and behavioral models.  While this satisfies the first 

three criteria in Table 4, the methodology does not allow for agents to have a different model than the 

system data model.  Without the ability to specify agent data models, MESSAGE does not fulfill the last 

two criteria in Table 4. 

The results for the Table 4 regarding MaSE come from the experience of using extended MaSE to 

develop a distributed course scheduling system.  The purpose of the system is to allow for the scheduling of 

classes for instructors and students.  Various individuals can schedule simultaneously using the distributed 

information sources of the system.  Appendix A further describes the requirements and development of the 

system throughout the MaSE process, while the rest of this section discusses how extended MaSE fulfills 

the criteria based on the experience of developing the course scheduling system. 

6.2.1 Specifying the Information Domain 

The first extension to MaSE involves creating the system ontology.  This extension meets the 

criteria for allowing the designer to specify the information domain at the appropriate time in the design 

process.  The previous steps in MaSE, Goal Hierarchy and Use Cases, provide a set of terms for 

consideration as possible objects in the ontology.  Table 5 shows the terms for the scheduling project 

derived from previous steps.  Seven of these nine terms become part of the ontology, providing useful 

information to assist the designer in developing the data model. 
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Terms Derived From
Schedule
Course
Section
CourseType
CourseOffering
Room
Student
Instructor

User
Sequence 
Diagrams

System 
Requirements

System Goals

 
Table 5 Candidate Ontology Terms 

The creation of the system ontology occurs at the appropriate time in the development process.  

Earlier steps analyze the goals and situations the system will encounter.  The step after the ontology 

creation passes messages and information amongst the roles.  This information passing occurs with 

parameters that are specified as objects from the ontology.  By placing ontology creation right before task 

creation, the methodology allows the user to analyze the problem domain thoroughly before creating the 

data model.  Designers can determine exactly what information is necessary for the system while creating 

the data model before it is required for the rest of the development process, meeting the criteria to develop 

the model before designing information sharing in the system. 

One alternative is to place the ontology creation before the creation of use cases and sequence 

diagrams.  This placement, however, would require the designer to specify the information domain before 

fully analyzing the sequence of events that occurs in the system.  This location allows for the objects in the 

ontology to be included as parameters in the sequence diagrams, but the use cases and sequence diagrams 

provide important details regarding exactly what information must be included in the objects, which 

outweighs the benefit of placing the ontology creation before the sequence diagrams. 

6.2.1.1 Steps 

Not only does the placement of the Create Ontology phase logically flow with the software 

development process, but the steps within the phase also flow from one to other.  At each step, the inputs of 
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the previous step are used to continue the development of the ontology.  The steps are also an iterative 

process, allowing the designer to make modifications at any time during analysis, design, and development 

The first step creates the class hierarchy and provides the designer with a skeleton framework for 

the rest of the ontology development.  This framework then expands with the addition of the attributes of 

the objects.  One development hurdle with creating attributes is that some users may find it difficult to 

separate between defining attributes that strictly describe the object and those that describe relationships in 

the information domain.  The designer can combine these two steps, if desired, to reduce confusion over 

which type of attributes to create at each step. 

Once the user specifies the information domain in terms of objects and their attributes, the next 

step records the requirements on the data in the form of axioms.  Considering the functions the system 

performs on the data aids in the development of the axioms.  In the course scheduling system, for example, 

the scheduling agents compare the ScheduledEvents of a Person to ensure that the person is not required in 

two different places at the same time.  The ontology describes this axiom to ensure later developers know 

to code the system appropriately to prevent the situation from occurring. 

Existing use cases simplify the final step of refining and validating the ontology.  The designer 

iterates through the sequence diagrams or use cases, and ensures that the created data model contains all the 

information needed to accomplish the described events.  If there are any problems with the data model, the 

appropriate modifications are made.  Once the designer tests the data model against all the use cases, the 

ontology creation step is finished. 

6.2.2 Using Objects from the Information Domain 

Once the designer specifies the information domain for the system, the objects in the model 

describe the information passed throughout the rest of the MaSE process.  The classes become parameters 

in the task and communication state diagrams, as well as attributes and parameters to methods in the 

components.  This section evaluates the benefits of including the information domain in behavior 
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specifications of the system, meeting the criteria of allowing the developer to use the data objects in the 

design specifications. 

6.2.2.1 Task and Conversation State Diagrams 

MaSE describes tasks and conversations using finite state automata, so the experience with using 

the ontology is the same for each case.  With the existing data model, the designer can specify the type of 

objects passed between agents, as shown in Figure 34.  This is an immense improvement over the previous 

version of MaSE, as designers can now observe the flow of information in the system.  In Figure 34, the 

agent will receive a Schedule object.  The developer knows the appropriate object to cast the received 

parameter to when this conversation is implemented in code.  Without the ability to specify the object type, 

the person responsible for coding has to guess at the appropriate object. 

 
Figure 34 Sample Finite State Automata with Information Passing 

With the ability to specify parameter types, designers also know the exact structure of the 

information passed between agents and can verify that each agent has all the information needed to 

accomplish its goals.  Previously, the designer passed in a parameter assuming the developers would realize 

to code that information into that object.  With a specified data model, the user can specify the object and 

ensure the information is an attribute of the object.  If the information does not appear in the ontology, the 

designer adds it to the data model. 

 83



 

 

One issue that still exists within MaSE is that the diagrams use local variables, as shown in Figure 

35.  In the state LoadFile, the agent has a local variable data, which is not defined in previous documents.  

Designers do not define local variables until the next-to-last step in MaSE, Constructing Agent 

Components.  This requires the designer to either skip ahead to define the variable in a component or 

remember the type of each variable for specification in the documents developed later.  The fix for this 

problem is to include some type of section attached to the finite state automaton for the conversation or task 

which lists the variables and functions included in the state machine.  In this manner, the designer could 

describe that data is a list of Instructor objects so that the variable can be carried through the rest of the 

design documents with a data value description. 

 
Figure 35 Task Diagram with Unspecified Variable 

6.2.2.2 Components 

The MaSE extensions also assist the user with creating the component architecture.  Previously, 

the designer could define an attribute as any data type.  If this type was not a programming language data 
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type, such as int, the object type was not specified anywhere in the design documentation.  Now, the 

designer can choose the variable’s data type from the component ontology or a system type.  When it is 

time to code the system, the developer now knows exactly how to code up the types developed for the 

system and which components use those types. 

To fulfill the criteria of allowing agent data models, extended MaSE includes component 

ontologies.  These ontologies further increase the usefulness of MaSE, allowing designers to integrate 

interface agents to legacy systems.  The user can create component data models based on the system the 

agent interfaces with and describe how the model relates to the system data model by specifying which 

classes and attributes correspond to one another. 

The final requirement, to allow the designer to illustrate the relationships between the data models, 

is satisfied by the development of a mapping between the system and component ontologies.  The 

implementation of this step in agentTool assists the user by suggesting objects to map to based on the 

ranking of objects by the Geometric Score Reduction Model. 

6.3 Geometric Score Reduction Model 

The metrics of time and rank of the relevant object, discussed in Section 3.3.2, provide a method 

for comparing the performance of the ranking model with three different implementations against a 

baseline alphabetical model.  The control set is a model that returns the objects sorted in alphabetical order.  

This research uses this model because when mapping, an alphabetical listing is preferred to a hierarchical 

tree structure.  A tree structure requires the designer to remember the parents of a class instead of simply 

the name of the class.  With an alphabetical listing, on the other hand, the designer can scroll through the 

list to find the appropriate object, without having to navigate through a tree-like structure.  This 

alphabetical model provides a baseline for comparing the various implementations of the Geometric Score 

Reduction model. 

As discussed in Chapter V, the ranking algorithm uses two methods to compare attribute structure.  

The first method, best-value, computes the similarity score between attributes and matches the attributes to 
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maximize the total similarity score.  The comparator method orders the attributes based on their 

characteristics and then matches two attributes if they are equal.  This research develops a strict and a loose 

comparator, where the loose simply uses the data type to decide whether two attributes are an exact match 

while the strict uses additional characteristics, such as the required and multiplicity characteristics of an 

attribute.  Each experiment evaluates the performance of the baseline model along with the performance of 

the best-value, strict comparator, and loose comparator methods of the Geometric Score Reduction Model. 

6.3.1 Experiment Setup 

This research runs three experiments to test the models.  The first experiment ensures the ranking 

model operates as designed by mapping an ontology to itself.  The second experiment tests a general case 

of mapping between same-sized ontologies to evaluate possible future use of the ranking model.  The final 

experiment tests the ranking model when mapping from a smaller ontology to a larger ontology, the 

condition that occurs when mapping from component to system ontologies. 

Each experiment involves two ontologies: from and target.  Every object in the from ontology is 

mapped to the target ontology.  Figure 36 demonstrates a sample run in the experiment.  In this sample run, 

the ranking model ranks the objects in the top right list based on their similarity to the Advisor object.  The 

relevant object in the target ontology is the Advisor object, ranked ninth in the list.  The experiment records 

this ranking and then ranks the AFITForm51 object.  At the end of all the runs, the average rank is 

determined along with the standard deviation of the ranks.  The ranking model ranks the objects in less than 

one millisecond, so each run is executed 1000 times to obtain a time measurement to compare the time 

metric. 

Choosing which ontologies to use was a complex task as most of the available ontologies are 

either very small or do not provide many attributes to the objects in the domain.  For example, some 

available ontologies create a hierarchy of objects to distinguish between objects in the domain and rely on 

the user to understand what the object represents by the name of the object.  Computer-based systems 

cannot use these types of ontologies, as the objects must contain attributes to actually pass information in 
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the system.  After a long search, two ontologies for the smaller to larger case were located in the DAML 

Ontology Library.  The similar-sized case experiment uses data models created by students at AFIT for a 

software engineering project.  The data models represent the same domain, but the students chose to 

represent some overlapping semantic concepts while also representing some concepts not represented by 

the other groups. 

 
Figure 36 Example Experiment Run 

6.3.2 Mapping to Identical Ontology 

The first experiment shows that the three versions of the ranking model work perfectly under the 

optimal condition of mapping to identical objects.  This experiment maps the four ontologies identified 

above to themselves.  For each run, the ranking model returned the identical object as the number one 

ranked object based on similarity. 

This is expected because an identical object receives a similarity value of 100% due to the name, 

role, and attributes matching exactly.  The only way the relevant object would not be returned number one 

is if another object receives a perfect similarity score, also.  For that to happen, however, the other object 
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would have to match the original object’s name, role, and attributes.  If so, the ontology contains two 

objects that are exactly the same, which is not possible in properly constructed ontologies.  Therefore, when 

mapping an ontology to itself, a correct implementation of the ranking model will always return the 

relevant object as the number one ranked object. 

6.3.3 Mapping to Similar Sized Ontology 

After verifying that the versions of the ranking model perform correctly in optimal situations, this 

research tested them using two ontologies with the same number of objects.  As discussed earlier, this 

thesis tunes the parameters of the Geometric Score Reduction Model to work best when mapping a smaller 

ontology to a larger ontology.  However, testing against similar sized ontologies can illustrate performance 

in a broader case. 

For this test, the research uses two data models developed by different teams for the same software 

project.  Each model contains the information necessary to construct a registrar system for the term project 

in a software engineering course.  The system ontology was constructed by Chad Harris, Nate Jensen, and 

Choung Kil while Eric Trias, Rick Rapallo, and Rick Day constructed the component ontology.  Each data 

model is described in detail in Appendix B. 

The experiment runs every object through the ranking model for comparisons with the objects in 

the target ontology.  In the case when an object was not in the target ontology, the run was omitted from the 

experiment since there is no correct answer for the ranking model to find.  The development teams used 

these ontologies to design the system, but did not actually implement the system, so the teams do not 

describe the same set of semantic concepts.  If the project included coding the system, the data models 

would have been refined to include the same semantic concepts. 

Table 6 presents the experimental results from the various versions of the ranking model.  The 

control case of the alphabetical model averages a rank of 13.  This is no surprise as there are 26 objects in 

the target ontology.  Since every object is tested, the expected rank is half the number of objects.  Every 

 88



 

 

version of the Geometric Score Reduction Model is slower, but outperforms the alphabetical model in 

ranking the objects. 

Best-Value Strict Comparator Loose Comparator Alphabetical
Average Rank 6.238095 7 7.428571 13.14286
Standard Deviation 5.448897 6.778467 5.143651 7.525196

Average Ranking Time 
for 1000 Ranks (ms)

1157.3333 396.8095 340.6667 31.4286
 

Table 6 Similar Sized Ontologies Ranking Model Results 

The best-value approach averages a rank of approximately 6, or 24% of the number of objects in 

the target ontology.  This approach has the largest run time of 1.157 seconds to return the ranked objects 

1000 times.  This increased execution time is due to the polynomial running time of the algorithm that 

compares the attributes of the object, as discussed in Chapter III.  Using this version of the ranking model, 

the designer looks at 24% of the objects in the target ontology, on average, before finding the correct 

mapping.  This is a definite improvement over the alphabetical model. 

Using a strict comparator to evaluate the attribute similarities, the ranking model averages a rank 

of 7, or 27% of the number of objects in the target ontology.  This accuracy is slightly less than the best-

value approach, but executes in approximately one-third the time, based on the average results from 

ranking objects 1000 times. The reduced running time is a product of the n*log n running time of the 

attribute comparison algorithm, as discussed in Chapter III. 

The loose comparator method performs slightly lower than the strict comparator in this 

experiment.  The method averages a rank of almost 7.5, a significant improvement over the alphabetical 

model.  The loose comparator method performs worse because it only looks at the data types of the 

variables.  With this method, it can yield false positives, non-relevant objects that it thinks are relevant.  

Because the algorithm compares fewer characteristics, however, it executes slightly faster than the strict 

comparator method. 
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6.3.4 Mapping to Larger Ontology 

The final experiment simulates the intended use of the Geometric Score Reduction model.  A 

smaller ontology, consistent with that of a component, is mapped to a larger ontology, consistent with a 

system ontology.  The system data model is the general concept model built by Jeff Heflin [Heflin 2000].  

The component data model is the GEDCOM ontology, a genealogy-based data model built by Marti Hall 

[Hall 2001].  The ontologies can be found online [DAML+OIL], and the exact website of each is discussed 

in Appendix B. 

This experiments uses these ontologies because the general concept model includes a majority of 

the semantic concepts of the GEDCOM ontology, while containing many more concepts than the 

GEDCOM model.  Table 7 shows the results from the experiment. 

Best-Value Strict Comparator Loose Comparator Alphabetical
Average Rank 2.166667 2 2 15.5
Standard Deviation 2.401388 2.44949 2.44949 7.342797
Average Ranking Time for 
1000 Ranks (ms) 1076.1667 428.8333 352 35.3333

 
Table 7 Experiment Results for Smaller to Larger Ontology Mapping  

Unlike the previous experiment, the best-value method performs slightly worse than the 

comparator methods.  The performance of each of the methods is an average rank of two, or 6.666% of the 

total number of objects in the target ontology.  This is a huge improvement over the traditional alphabetical 

listing that averaged approximately 51%.  Using the ranking model, the designer looks at less than one-

seventh of the number of objects required using the alphabetical ranking model. 

6.3.5 Analysis of Implementation Approaches 

Comparing the average rank of the implementations to the baseline model, using hypothesis 

testing on paired data, shows that the experiments yield a p-value of less than one percent.  This signifies 

that the experiments present enough data to conclude that the implementations of the Geometric Score 
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Reduction Model have a higher precision than the baseline model.  However, the experiments find no 

statistically significant difference among the precision of the three implementations. 

Situations exist where one implementation is better suited than the others.  The best-value method 

allows for partial matches when comparing attributes and is built to allow designers to specify similar 

attributes as different data types, as discussed in Section 5.2.1.  This capability does not exist in the 

comparator implementations, so the best-value method is recommend for most situations. 

When mapping to an ontology with a large number of objects, however, the user may find the 

best-value approach takes too long to rank the objects.  In this situation, the comparator implementations 

should be used.  The choice between the strict or loose comparator is determined by the designer’s 

perception of whether or not the two ontologies are specified in the same level of detail.  For example, if 

one model describes attributes with their multiplicities while the other model simply lists the attribute’s 

names and data types, the user should use the loose comparator.  If the characteristics are well-defined in 

each ontology, however, the strict comparator should be used to take advantage of these characteristics. 
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VII. Conclusions and Future Work 

The previous chapters describe the extensions added to MaSE to address the information domain 

of multiagent systems and the Geometric Score Reduction Model developed to assist designers in mapping 

between ontologies.  This chapter summarizes the results from the previous chapters and suggests possible 

areas for future work to enhance MaSE and the ranking model. 

7.1 Summary and Conclusions 

This research fulfills all the goals described in the introduction by maturing MaSE to address the 

information domain, providing a methodology to develop the structural, behavioral, and information 

models of heterogeneous multiagent systems.  To fulfill the goals, the research identifies the requirements 

for constructing and using information domain specifications in multiagent systems.  MaSE now includes 

the development and use of ontologies to define the information domain of the system.  This research 

shows that ontologies can fully describe the information domain as needed in the development of 

heterogeneous multiagent systems. 

These additions to MaSE lead the user through the creation of the system ontology and use of data 

model objects in agent behavior.  The extensions mesh with the previous version of MaSE to ensure the 

MaSE steps logically flow through a software development process where the outputs of one step become 

inputs to the following steps.  As part of the MaSE process, the designers now construct system and 

component ontologies by creating and structuring classes and attributes using terms extracted from the goal 

hierarchy, system requirements, and use cases.  Agents can then use these classes to share information with 

one another. 

By adding these steps that address the information domain, this research matures MaSE towards a 

complete methodology for building multiagent systems.  MaSE now addresses the system’s behavioral, 

structural, and data models, thus defining the aspects required to ensure a coded system will fulfill the 

 92



 

 

initial requirements.  With these models, the designer can ensure that each agent has the required 

information to fulfill all of the system requirements. 

Part of the information domain model of the system describes the mapping between the system 

ontology and the ontologies of the agent components.  To assist with creating these mappings, this research 

develops an information retrieval ranking model, the Geometric Score Reduction Model, which computes 

the probability that two object classes represent the same semantic content in the information domain.  This 

research programmed the ranking model into agentTool, as a proof of concept, and showed that the ranking 

model can reduce the development time of these mappings to one-seventh of the normal development time.  

The experiments in Chapter IV also indicate that the ranking model can be expanded to assist designers in 

mapping any two data models while integrating systems. 

7.2 Future Research Areas 

7.2.1 Automatic Conversion from UML to Ontologies 

The development of automatic transformations to translate UML specifications into an ontological 

format would help with the expansion of existing ontology libraries.  With an automatic translator, 

designers could use existing UML data models without having to convert them manually into ontology 

specifications.  This is particularly useful when integrating legacy systems, whose data models are 

specified in UML.  Part of the research would include developing a standard ontology application 

programming interface (API).  The current DAML+OIL API provides a starting point, but the API is new 

and needs to mature to input and output other ontology specification languages. 

7.2.2 Creating Converters from Ontology Mappings 

Currently, designers must develop code to implement the mappings between ontologies specified 

in MaSE.  More research could develop automatic transformations to generate translators to implement the 

mappings.  These translators would perform similar data marshalling to that done by distributed operating 
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systems.  They could take the objects from the system ontology and create the appropriate objects from the 

component ontology and vice versa. 

The current mappings contain all the information necessary to create these translators.  Future 

research must develop the proper architecture for the translators and develop the transformations to specify 

code to fit into the architecture to perform data marshalling for the multiagent systems.  This future 

research would further assist the developers by reducing the amount of code necessary for them to 

complete. 

7.2.3 Ranking Model Enhancements 

While this research shows that the ranking model performs well, user-feedback could improve the 

results of the model.  User-feedback improves the precision of returned results in Information Retrieval 

systems, and can be applied to the Geometric Score Reduction Model.  As the designer maps the objects of 

an ontology, the ranking model uses the selected objects to fine-tune the parameters of the model.  These 

adjustments should improve the precision of any future rankings the model performs on the ontologies.  To 

modify parameters, the model adjusts the probabilities used to compute similarity values based on the 

model’s performance. 

7.2.4 Transformations 

There are also topics in MaSE for future research.  Previous research by Clint Sparkman addressed 

the development of semi-automatic transformations to construct the design models from the analysis 

models in MaSE; however these transformations currently do not work consistently in agentTool.  Future 

research should make these transformations more robust and include error catching so that any problems 

are properly reported to the user. 

Constructing the design models from the analysis models is a straightforward transformation, so it 

is logical to have an automated transformation of this process.  The automated process ensures that the 

design models represent all the concepts described in the analysis models, while a manual process might 
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miss some concepts.  The automated process also saves the designer the work of creating these design 

models, which can be a lengthy development process.  The development of reliable, robust transformations 

for MaSE is the research area that provides the most benefits to users. 

7.2.5 Improved agentTool Visual Interface 

Another research area pertains to improving the visual interface of agentTool.  The current tabbed 

interaction in agentTool fails to take advantage of the flow of information through the MaSE process.  For 

example, to view an agent architecture, the user must click on the agent and then on the agent architecture 

tab.  An improved interface would allow for the user to drill-down into the agent through a double-click, or 

some other method.  This research area would require identifying and specifying the flow of information 

throughout the MaSE process and then constructing an interface to visualize this information and its flow in 

agentTool. 

7.3 Summary 

Designers will integrate many different automated systems to develop the global information grid 

called for by Joint Vision 2020.  The Geometric Score Reduction model can aid this process, as this 

integration involves mapping the various data models of each system.  

This research also addresses the need for a complete methodology for constructing reliable 

multiagent systems.  MaSE provides designers with an engineering methodology to develop the 

information domain, behavioral and structural models for multiagent systems.  Using MaSE, developers 

can construct the secure, reliable, and robust systems necessary to provide information superiority for our 

warfighters. 
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A. Appendix – Designing Distributed Scheduling System Using Extended 

MaSE 

The goal of the project is to develop a semi-automatic course-scheduling program to allow users to 

organize the time and location of classes.  The system is representative of a university-type environment for 

which the registrar’s office develops a quarterly schedule.  Within the university, there are multiple 

departments offering courses of differing types.  Students may take courses from any department, and 

classrooms are shared resources between all departments.   

The generic network system described by the requirements has the required scheduling data 

resident on up to four separate computers and allows any number of concurrent schedulers from network 

machines.  The system must fulfill the following requirements: 

• Each database can be resident on any network computer, but the design must be robust 
enough to consider that the databases may be moved. 

• There may be any number of schedulers required to schedule all the courses for a single 
quarter. 

• There are 15 course types, each with a 4 character identifier.  Each course has a three 
digit identification number and a two digit section number.  A course may have multiple 
sections determined by class enrollment.  A particular class offering is designated by the 
course type, course number and section number. 

• Any scheduler can choose to schedule any one or more class types. 

• Only one scheduler may schedule any given course type at once. 

• Any scheduler should be able to print a copy of the current scheduling of any (one or 
more) course types. 

• There should be only one master schedule resident on the system. 

• The system should produce an integrated schedule that includes course type, course 
number, section number and time blocks consisting of day, start time, end time and room. 
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This appendix describes the development of this system using extended MaSE and discusses each 

step along with the results of the step and how the designer reached those results. 

A.1 Capturing Goals 

The first step translates the functional requirements into the goals of the system.  The main goal 

for this system, based on the requirements, is to perform AFIT scheduling activities.  The requirements then 

describe four subgoals: producing, displaying/outputting and managing schedules and handling user input.  

Figure 37 shows the complete goal hierarchy for the system.  Every system requirement is met by one of 

these goals and the rest of this section describes each of the goals in detail. 

 
Figure 37 Distributed Course Scheduling Goal Hierarchy 

A.1.1 Produce a Schedule 

This goal represents all the activities required to create the schedule for a specified course type.  

As the main system activity, producing the schedule is the most extensive goal.  The first sub-goal, Verify 

the Components, is a partitioned goal since it is divided into sub-goals relating to particular schedule 

requirements.  These subgoals ensure there are enough students for each course and that there are 

instructors to teach each course.  Once the sub-goals are met, the Verify the Components goal is satisfied, 

also. 
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Prepare the Components encompasses all the goals relating to splitting class offerings into the 

proper number of sections, based on student enrollment and determining the available resources for 

scheduling.  The Schedule the Sections goal contains all the goals relating to the actual scheduling of the 

courses; assigning a time and classroom to sections and assigning students and instructors to these sections. 

A.1.2 Allow User Inputs 

This goal handles all user input, allowing the system to interact with the user.  The goal allows 

users to create and modify the schedules and to instruct the system how to handle any scheduling conflicts 

that may arise.  Creating a separate goal for user input allows all the other goals to not have to handle the 

user input required for system execution. 

A.1.3 Display the Schedule 

This goal fulfills the requirement of allowing the user to view or print schedules.  The goal 

contains a sub-goal for each of these two methods of viewing schedules.  The goals pertain to both new and 

existing schedules, so the system does not handle the displaying separately for each of these cases.  By 

adding an overall goal for displaying the schedule, the design reduces the number of goals needed when 

producing new or managing existing schedules. 

A.1.4 Manage the Existing Schedules 

Once schedules are created, the system must retain them for future modification or viewing.  

Manage the Existing Schedules handles this requirement by storing the goals and ensuring that multiple 

schedulers do not simultaneously schedule the same course type.  Another subgoal is to unschedule the 

various sections in a schedule if a user decides to cancel an existing schedule.  The goal is a partitioned 

goal, as it is satisfied by the combination of the three subgoals. 
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A.2 Applying Use Cases 

After analyzing the system requirements, four use cases describe the scenarios in which the system 

participates.  The first use case, Produce Schedule, is the scenario where the user tells the scheduler to 

schedule a set of course types.  The scheduler displays the existing schedules for the course types and asks 

the user if the existing schedules should be discarded.  If the user responds with an affirmative, the 

scheduler enters the Erase Schedule use case. 

Erase Schedule frees up the resources used by the schedule.  The system notifies the managers for 

the students, classrooms and instructors that the schedule is no longer valid and that the time and resources 

used by the schedule are now available.  In this manner, the system updates all data to reflect the 

cancellation of the schedule. 

Once the system erases the existing schedule, the Automatically Generate Schedule use case 

begins.  This use case involves the scheduler first obtaining a lock on the course type to be scheduled.  This 

allows the schedule manager to prevent simultaneous scheduling of the same course type.  Once the 

manager grants a lock, the scheduler retrieves the data on all the sections needed for the course types, along 

with the information regarding the students and instructors for these classes.  The system creates the 

schedule once it receives the availability of the classrooms.  Because multiple schedulers can run at once, 

the system must check the new schedule with each of the managers to ensure the schedule is feasible.  Each 

manager checks the schedule against the current state of the resources and replies whether the schedule is 

approved.  If approved, the manager’s resources are adjusted to reflect the times in the new schedule.  This 

commit protocol can create a race condition when scheduling, as the first user to finish is more likely to 

have the schedule approved.  This protocol balances the need for distributed scheduling with the 

requirement to not double-book resources.  The schedulers can obtain the data, but the data may change 

during scheduling, requiring the system to receive the approval of the managers once the schedule is 

created. 
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Another option is to lock each resource, but then the system could only allow schedulers to 

execute one at a time.  As a result of the need for simultaneous scheduling, the system will now have 

situations where the created schedule is not valid and must be rebuilt.  If any of the managers disapprove 

the schedule because of conflicts, the system notifies any managers that have approved the schedule to free 

up the resources used by that schedule. 

Once the system creates a valid schedule, the system shows the new schedule to the user and asks 

if the user accepts the schedule.  If so, the schedule is passed to the schedule manager to save.  If not, the 

schedule is passed to the schedule manager to have all the resources used by the schedule released. 

The last use case, Output Schedule, is the scenario of the user wanting to view or print a schedule.  

The use case also contains the situation when the system initiates the display before and after creating a 

new schedule.  Once the use cases describe all the system scenarios, the designer converts the use cases 

into sequence diagrams. 

A.2.1 Sequence Diagrams 

The sequence diagrams flow directly from the use cases.  The Produce Schedule and Erase 

Schedule use cases each have one sequence diagram that fully describes their scenarios.  The Automatically 

Generate Schedule has two sequence diagrams to illustrate the scenario when the schedule is approved and 

disapproved by the user.  The last use case, Output Schedule, has three sequence diagrams for its three 

scenarios; user requests display to screen, system requests display to screen, and user requests print out. 

The construction of the diagrams from the use cases is straightforward and is not described in this 

research.  The main decision in creating the sequence diagrams is the creation of roles for the system.  This 

research developed a manager for the instructors, classrooms, students, courses and schedules.  These 

manager roles come from the requirement that the source data may be located on separate servers.  These 

roles act as an interface to the service providing the data for the individual resources.  The user role 

represents the user in the various scenarios.  Because the system encompasses all of the roles, the role of 

scheduler represents the part of the system that performs the scheduling algorithm.  Similarly, the output 
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manager handles the displaying and printing of the schedules.  The analyst used these roles to construct the 

sequence diagrams for the use cases. 

A.3 Developing System Ontology 

Before further specifying the system behavior, the designer constructs the ontology for the project.  

The system uses this data model to share information between agents to accomplish the systems goals.  

This section discusses the development of a data model for this multiagent system. 

A.3.1 Define Purpose and Scope 

The system requirements determine the purpose and scope of this ontology, and Figure 38 shows 

the metadata for the developed data model.  The ontology contains only the information needed to schedule 

classes, with this scope leaving out information such as the address of individuals or the grades received by 

the students.  Once the scope and purpose, along with the other metadata, are accurately described, the 

designer can start the construction of the ontology. 

 
Figure 38 Metadata for the System Ontology 
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A.3.2 Collect Data 

The first step is to create the list of candidate terms for the data model.  Table 8 shows the list of 

candidate terms derived from the system requirements, goals, and sequence diagrams.  This list acts a basis 

for objects and attributes of the ontology, but designers frequently expand the list throughout the 

development process.  The next section illustrates the expansion and use of the candidate list. 

Terms Derived From
Schedule
Course
Section
CourseType
CourseOffering
Room
Student
Instructor

User
Sequence 
Diagrams

System 
Requirements

System Goals

 
Table 8 Candidate Ontology Terms 

A.3.3 Construct Initial Ontology 

A.3.3.1 Existing Ontologies 

If the developed system was part of a larger school wide information system, it is beneficial to use 

the data model from that larger system.  For example, if a college-wide ontology existed, using that 

ontology the system could integrate easily into any other information system using the college-wide model.  

This section builds an ontology from scratch to demonstrate the methodology, but for an actual registrar 

system it is recommended to build an ontology that discusses more than just the registrar portion of 

academia. 

A.3.3.2 Build Class Hierarchy 

Figure 39 shows the initial class hierarchy for the registrar system.  The terms course type and 

course offering from the term list are not included in the ontology.  Course type defines the type of a course 
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and is appropriate as an attribute of the Course object.  A Section represents the specific offering of a 

course, so a course offering object is redundant and not included in the data model.  Along with not 

including some terms, the ontology includes terms not originally in the candidate list. 

 
Figure 39 Initial Class Hierarchy 

These additional objects stratify the objects and hold redundant information.  Students, Instructors, 

and Users will all have similar attributes and so the Person class acts as a super class to hold these common 

attributes.  DateAndTime holds the information regarding the start/end date and times of the courses.  The 

initial ontology required that classes occur only in classrooms, but since there are other types of resources, 

such as lecture halls or auditoriums, a Resource class is added.  The system will use this class to schedule 

sections in any type of room. 

A.3.3.3 Add Attributes to Classes 

Once the initial class structure is complete, the data model can add attributes to the classes.  Table 

9 shows the attributes of each object and the attributes’ semantic representation.  The question for creating 

attributes is What information must the objects contain for the system to function properly.  Table 9 shows 

the attributes in the highest level they occur.  For example, name and idNum occur in Student, Instructor 

and User, but are not shown in the table.  The attributes represent the same semantic content in all of the 
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subclasses of the objects in Table 9.  The first pass in creating attributes involves those attributes that do 

not specify relationships among objects.  The relationship attributes are added in the next step. 

Object Attributes Attribute Description
name Name of the individual

idNum
Social Security or other identification number of the 
person.

date Date of the instance
time Time of the instance

duration
Duration of the object.  So the stop time is this many 
hours from the start time/date specified in this object

coursetype
The string defining the type of course (per system 
requirements)

number The course number (per system requirements)
description Brief description/name of the course

numHours
Number of hours the class meets.  System needs to 
know how many hours to schedule a week.

Resource name Name of the resource
Section number Section number (per system requirements)

Schedule courseTypes

List of course types the schedule contains.  Reduces 
the time necessary to determine what type of sections 
are in the schedule.

Person

DateAndTime

Course

 
Table 9 Initial Attribute Listing 

A.3.3.4 Define Relationships 

Designers sometimes merge the previous step and this step into one, as both involve adding 

attributes to the objects.  This step specifies the relationships between objects as attributes.  A single 

attribute can represent a relationship, such as the fact that a Section is an offering of a Course represented 

as an attribute of the Section.  In some instances, however, two attributes represent the relationship, such as 

a student registers for a section and the section must know all the students registered for it.  This requires an 

attribute in both the Section and Student objects.  Table 10 shows the attributes added to the objects and 

why the system needs the attributes.  By recording the instructor, students, and classrooms in the Section 

object, the system can easily erase a schedule.  Using these references the system knows exactly which 

objects to update.  After describing all the attributes, the designer specifies any axioms regarding the 

attributes and objects. 
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Object Attributes Attribute Description

coursesToTake
The Courses the student needs to register for.  Once 
registered, the course is removed from this list

registeredSections

The Sections the student is currently enrolled in. 
System will use to determine the available times for the 
student.

canTeach The courses the instructor is qualified to teach.
registeredSections Same as Student.registeredSections

Schedule composedOfSections The list of Sections contained in the schedule

Resource
usedBy

The sections currently using this room.  Allows the 
system to determine the open time for this classroom.

course The Course object the section is an offering of.
taughtBy The Instructor object teaching the section. 
location The classrooms that will hold the section.
dateandTime The times for the sections.
registeredStudents The Students that are registered for this section.

Section

Student

Instructor

 

Table 10 Relationship Attributes for Distributed Scheduling 

A.3.3.5 Define Axioms 

The first system axiom requires that the sections of an instructor or student cannot overlap.  In 

other words, a person cannot have two events scheduled at the same time.  A similar requirement is that 

two sections must not occur in the same room at the same time.  These two axioms specify the situations 

that cannot occur with the system data.  With the axioms fully specified, the project can now validate the 

ontology using test cases. 

A.3.4 Refine and Validate 

Using the use cases, the designer simulates system behavior to ensure that the ontology contains 

all necessary information.  If the project needs additional information, the designer modifies the ontology to 

meet the need.  For this project, the ontology does not fulfill all the needs for the Generate Automatic 

Schedule use case.  The first problem arises when the SectionManager creates the appropriate number of 

Section objects for the courses based on the student enrollment.  The ontology does not describe the 

maximum number of students allowed in the course offerings.  To fix this problem, the project adds the 
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maxNumberofStudents attribute to the Course object.  This attribute allows the system to know the 

maximum number of students that can occur in a section of the course, so that seminar classes can have 

smaller numbers than a lecture class. 

The next problem occurs during the actual scheduling of the sections by the Scheduler.  Instructors 

and students might have other events that conflict with the scheduling of sections, such as department 

meetings, but the ontology is incapable of representing these events.  The project adds a ScheduledEvent 

object as a parent of a Section to represent these other events.  A Person then has a scheduledEvents 

attribute that contains a list of all events that individual is required to attend.  With these additions, the 

scheduler can verify that an individual has no activity scheduled during a specific time frame. 

The final problem is a design issue, instead of the lack of information issues discussed above.  The 

DateAndTime object currently represents the end time by the duration from the start time and date.  This 

will require the system to compute the end time for every comparison while scheduling.  This increased 

computation outweighs the extra memory needed to keep the end date and time.  By adding an endDate and 

endTime attribute, the system can schedule the sections with less processor use. 

A.3.5 Final Ontology 

The ontology is validated once the designer is comfortable that the ontology includes all the 

information needed to execute the use cases.  Figure 40 and Table 11 show the attribute list and the final 

class hierarchy for the system data model.  At anytime in the MaSE process, the designer may identify 

additional information required by the system and make the appropriate changes to meet this need.  Like 

the other steps in MaSE, the construction of the system ontology is iterative and can be revisited at any 

point in the development cycle. 
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Object Attribute Description
name Name of the individual

scheduledEvents List of events the person participates in.  System 
uses this list to term free times for the individual.

idNum Social Security or other identification number of 
the person.

registeredSections
The Courses the student needs to register for.  
Once registered, the course is removed from this 
list

coursesToTake
The Sections the student is currently enrolled in. 
System will use to determine the available times 
for the student.

Instructor canTeach The courses the instructor is qualified to teach.
composedOfSections The list of Sections contained in the schedule

courseTypes
List of course types the schedule contains.  
Reduces the time necessary to determine what 
type of sections are in the schedule.

dateandTime The time window the event occurs in.

location The location (Resource Object) where the event 
occurs.

course The Course object the section is an offering of.
taughtBy The Instructor object teaching the section. 
number Section number (per system requirements)

registeredStudents The Students that are registered for this section.
startDate Start date of the event
endDate Ending date of the event
startTime Start time of the event
endTime Ending time of the event

courseType The string defining the type of course (per 
system requirements)

number The course number (per system requirements)

description Brief description/name of the course

numHours
Number of hours the class meets.  System 
needs to know how many hours to schedule a 
week.

maxNumberofStudents Needed to calculate the necessary number of 
sections based on enrollment

name Name of the resource

usedBy
The sections currently using this room.  Allows 
the system to determine the open time for this 
classroom.

ScheduledEvent

Schedule

Student

Person

DateAndTime

Section

Resource

Course

 

Table 11 Final Attribute List for the Registrar Ontology 
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A.4 Refining Roles 

This step starts with assigning goals to the roles from the sequence diagrams and then constructing 

tasks for the roles to accomplish the goals.  This section discusses the goals and tasks of each role and why 

the analyst chose each assignment. 

A.4.1 CourseManager 

The course manager creates the appropriate number of sections for each course of a specified 

course type, based on the number of students enrolled.  Because of this function in the sequence diagram, 

the role is responsible for accomplishing the Prepare Sections for Scheduling goal.  The role accomplishes 

this goal through the ManageSectionInfo task, shown in Figure 41. 

 
Figure 40 Final Class Hierarchy for the Registrar Ontology 

The task begins by loading the data for the courses into memory from persistent memory.  

Persistent memory is necessary in case of improper shutdown of the system, ensuring the data in the system 

remains consistent.  Once the data is loaded into memory, the task then listens for requests from other tasks. 
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When the task receives a request for the sections of a specific course type, the role requests the 

student data from the StudentManager.  The task then creates the appropriate number of sections for each 

course and returns the list of sections to the requesting Scheduler role. 

 
Figure 41 ManageSectionInfo Task 

A.4.2 InstructorManager 

The InstructionManager role is responsible for retaining the instructor information and the 

availability of each instructor.  The analyst assigned the Verify Instructor-Course goal because this role will 

handle the information that tells what instructors can teach which courses.  The role must also ensure that 

instructors are never scheduled to be in two different places at the same time.  To accomplish its goal, the 

role performs the ManageInstructorInfo task shown in Figure 42. 

The task begins by loading the instructor information and availability from persistent storage.  

Once loaded, the role will respond to any one of three requests from the other roles.  The first request is for 

the information about instructors for a specific course type.  The manager constructs a list of all instructors 

qualified to teach courses of that type and returns the list.  The second request is to free the resources used 

by a schedule.  The manager uses the schedule to determine what instructors should be modified.  The 
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manager changes the instructors so that they are no longer unavailable during the times of classes in the 

schedule.  The manager then saves the instructor availability to persistent memory and returns an 

acknowledgement to the role that sent the message. 

 
Figure 42 ManageInstructorInfo Task 

The final request asks the manager to approve a schedule.  The manager checks for any conflicts 

with the instructors in the schedule and their current free-time, and returns whether the schedule is valid or 

not.  If valid, the manager updates persistent memory to reflect the new schedule. 

A.4.3 OutputManager 

This role is responsible for handling the output of schedules in the sequence diagrams.  This 

function pertains to all the sub-goals of the Display Schedule goal.  The design includes a task for each of 

the sub-goals.  Although one task could handle both the printing and the displaying to the monitor, different 

tasks are used to simplify the internal task states. 
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The DisplaySchedule task waits for a request to display a new schedule or an existing schedule to 

the monitor.  If an existing schedule is requested, the task requests the schedule from the ScheduleManager.  

The schedule is formatted to fit on the screen and then displayed. 

The PrintSchedule task waits for a request to print an existing schedule to the printer.  The task 

requests the schedule from the ScheduleManager, formats it for the printer and then places the schedule in 

the print queue. 

A.4.4 ResourceManager 

The ResourceManager maintains all the information regarding the classrooms in the system.  This 

function maps to the Prepare Resources goal.  To maintain when the classrooms are available, the manager 

performs the ManageSectionInfo task.  This task is analogous to the ManageInstructorInfo task, only the 

task handles classroom, instead of instructor information. 

A.4.5 ScheduleManager 

This role retains all accepted schedules in persistent memory and ensures that only one person is 

scheduling a course type at any one time.  This role logically contains all the sub-goals of the Manage 

Existing Schedule goal.  This research designed two tasks, as the freeing of resources is separate from 

storing and adding schedules. 

The ManageSchedules task, shown in Figure 43, loads the schedules from persistent memory and 

then handles messages from the other roles.  If the task receives a request for a schedule of a specific course 

type, the manager returns the appropriate schedule to the role.  If the request is to save a schedule into the 

system, the manager adds the schedule to the master schedule and saves it to memory. 

The task can also handle lock requests.  Locks are used to ensure that only one agent in the system 

is scheduling a course type at any one time.  Before scheduling a set of courses, the Scheduler must obtain 

a lock on that course type.  The ScheduleManager checks if that course type is currently locked.  If not, it 
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approves the lock request.  If a lock already exists, the manager returns that a lock on that course type 

already exists. 

 
Figure 43 ManageSchedules Task Diagram 

If after receiving a lock the Scheduler wants to cancel trying to schedule the course type, the role 

passes an abort message to the ScheduleManager.  The manager updates its memory to show that that 

course type is no longer locked. 

The FreeScheduleResources task returns all the resources used by a schedule into an available 

state.  The task contacts the InstuctorManager, StudentManager, and ResourceManager; asking each to 

update their memory based on this schedule being removed from the system. 

A.4.6 Scheduler 

The Scheduler role is responsible for creating a schedule for a course type when requested.  Thus, 

this role meets all goals related to the creation of a schedule and performs the GenerateSchedule task to 

meet all of these goals. 

The GenerateSchedule task is the most involved of all the tasks in the system.  The task waits for a 

request from the User to schedule a specific course type.  The task obtains a lock for that course type from 

the ScheduleManager.  If the lock is denied, the task notifies the User role and goes back to waiting.  If the 
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lock is granted, the task obtains the sections needed and all the information regarding the classrooms, 

students and instructors for courses of that type. 

 
Figure 44 FreeScheduleResources Task Diagram 

Now that the task knows all the information, it attempts to create a schedule.  If the system cannot 

create a schedule, due to the existing schedules in the system, it notifies the User and aborts creating the 

schedule.  If a schedule is found, the task asks the InstructorManager, ResourceManger and 

StudentManager to approve the schedule.  If any of the managers do not approve the schedule, those 

managers that have approved it are notified to free up the resources used by the schedule and the task 

begins from the point where the lock was granted earlier. 

Once a schedule is found and approved by the manager roles, the schedule is passed to the 

OutputManager to display to the user.  The system then asks the user to accept the schedule.  If accepted, 

the schedule is saved in the ScheduleManger.  If not, the schedule is passed to the FreeScheduleResources 

task and the whole process starts over. 
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A.4.7 StudentManager 

The StudentManager maintains all the information regarding the students in the system, which 

maps to the Prepare Resources goal.  To maintain when the classrooms are available, the manager 

performs the ManageSectionInfo task.  This task is analogous to the ManageInstructorInfo task, only the 

task handles classroom, instead of instructor information. 

A.4.8 User 

The User role is responsible for handling all inputs from the user and translating them into the 

proper requests to the various roles.  The Allow User Input goal is met by the HandleUserInput task.  This 

task waits for user input, parses it and performs the appropriate system call. 

A.5 Creating Agent Classes 

The next step involves taking the roles and turning assigning them to agent classes.  For this 

project, the design uses one agent class for each of the manager roles.  The design combines the roles of 

User, Scheduler and OutputManager into a single agent class.  These roles reside on the same system to 

reduce network traffic and so including them in the same agent class reduces the number of agents in the 

system.  The InstructorManager, StudentManager, ResourceManager and ScheduleManager will reside on 

separate systems and must have separate agent classes.  Figure 45 shows the agent classes and their 

assigned roles. 

A.6 Constructing Conversations 

Figure 45 also shows the conversations between the agent classes.  This research constructed these 

conversations using the tasks for each role.  In the tasks, the role sends and receives messages.  Once the 

design assigns a role to an agent class, these messages become internal or external messages.  For every 

send in a task diagram, the designer finds the corresponding receive transition.  If the roles reside in the 

same agent class, no conversation is needed.  If the roles are in separate agent classes, the designer creates a 

new conversation. 
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Figure 45 Agent Template Diagram 

For example, in the FreeScheduleResources task there are four send messages.  The first three are 

to the InstructorManager, StudentManager and ResourceManager, which are all in separate classes.  A 

conversation exists for each of these sends:  unscheduleStudents, unscheduleInstructors and 

unscheduleClassrooms.  The SchedManager is the initiator for each of these conversations, as the agent 

starts off the conversation by requesting that the other agent free up the resources used by that schedule.  

The other agent replies once complete and the conversation is finished.  In this system, most conversations 

are: send a message and wait for the response. 

Some conversations, such as abortSchedule, are more complex.  After the start of the 

conversation, the responder must start additional conversations, as shown in Figure 46.  This conversation 

accounts for the last send from the FreeScheduleResources task.  When asked to abort the passed-in 

schedule, the agent starts the three conversations described earlier to free the instructor, student and 
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classroom time.  Once the conversations are complete, the agent responds that the schedule has been 

aborted. 

 
Figure 46 abortSchedule Conversation Responder Diagram 

Using the procedure of matching sends to receives and ensuring every message sent to a task 

located in a separate agent class occurs in a conversation, the designer specifies every needed conversation. 

A.7 Assembling Agent Classes 

The designer must now specify the agent behavior by describing the internal components of each 

of the agent classes.  As the conversations came from the tasks, so do the internal components.  This system 

uses the typical MaSE design of having one component for each of the tasks an agent performs.  Each 

component is then responsible for accomplishing the task it derives from. 

This simplifies the design of the agents by compartmentalizing the agent behavior into parts that 

contain a single task to accomplish.  Without separating the tasks, the designer must integrate the behavior 

of the two tasks into one single thread of control.  This is a difficult and unnecessary process.  With each 

component performing a single task, the designer can easily transform the task behavior into the component 

behavior.  Now, however, the component starts specific conversations instead of sending messages. 

Figure 47 is the component state diagram for the FreeScheduleResources component of the 

SchedManager agent and shows how the task is transformed into the component behavior.  In the task 
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diagram, the role received a request and then sent a message to each of the managers.  These send messages 

are included in conversations, so when the agent receives the request, the agent starts the conversations and 

then completes the initial conversation. 

 
Figure 47 FreeScheduleResources Component State Diagram 

The designer specifies the attributes and functions of each component after completing the state 

diagrams for the component.  These methods come from the actions performed in the state diagrams.  In the 

ManageSchedules task, one state has the action allowed = lockCourses(courseType:String).  This action 

became part of the lockSchedule conversation, started by the ManageSchedule component of the 

SchedManager agent.  As such, the component must contain an attribute allowed of type Boolean and a 

function lockCourses that returns a Boolean and receives a String as a parameter.  This project completes 

this step by specifying the behavior, attributes, and methods of all system components. 

A.8 System Design 

The System Design step assigns agents to different computing platforms on the network.  The 

distributed course scheduling system has the design of one instance of each agent, except the UserAgent 

that has multiple instances.  Each agent resides on its own platform, as the system requirements dictated 
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that each of the resources could be on a separate computer.  Since each agent is responsible for one of those 

resources, the agents must be on different platforms.  Once the agents are placed on platforms, the 

communication between platforms flows from the conversations between the agents. 

With all of the MaSE steps complete, the analysis and design documents describe the system’s 

behavior, architecture and information domain.  The plans describe the agent classes, conversations and 

their location in the system, providing the details necessary to code the multiagent system. 
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B. Experimental Raw Data 

This section contains the raw data from the experiments on the Geometric Score Reduction Model.  

Each table has the object tested on, the correct object for mapping and the position in the ranked list of that 

object. 

B.1 Mapping Same-Size Ontologies 

This section lists the results from the mapping of the Trias, Day and Rapallo version of the 

Registrar Ontology to that of Harris, Jensen and Kil. 

B.1.1 Best-Value 

From To Rank
Time (ms) to 
Rank 1,000 

Times
Thing Thing 1 145
Advisor Advisor 9 1032
AFITform51 Form51 8 2824
AFITform69 From69 10 611
AFITGradList GraduationList 2 841
Course Course 13 2258
Database Database 1 140
Dean Dean 11 375
Department Department 1 1452
DepartmentHead DepartmentHead 11 626
DeptCatalog DeptCatalog 21 1442
DeptGradList GraduationList 1 846
Edplan edplan 1 2599
Grade GradeList 2 831
GradProgram GradProgram 2 2528
Instructor Instructor 12 611
QuarterCourseOffering CoursesOfferedList 6 1081
Registrar Registrar 8 1032
Requirements Requirements 4 641
Schedule ClassSchedule 1 646
Student Student 6 1743

AVG= 6.238095 1157.333333
STD= 5.448897 802.4071494  
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B.1.2 Strict Comparator 

From To Rank

Time (ms) to 
Rank 1,000 

Times
Thing Thing 1 281
Advisor Advisor 10 385
AFITform51 Form51 5 621
AFITform69 From69 6 320
AFITGradList GraduationList 2 340
Course Course 2 517
Database Database 1 284
Dean Dean 6 330
Department Department 1 443
DepartmentHead DepartmentHead 5 350
DeptCatalog DeptCatalog 25 425
DeptGradList GraduationList 2 344
Edplan edplan 2 520
Grade GradeList 16 331
GradProgram GradProgram 4 596
Instructor Instructor 12 351
QuarterCourseOffering CoursesOfferedList 3 390
Registrar Registrar 8 393
Requirements Requirements 20 320
Schedule ClassSchedule 2 351
Student Student 14 441

AVG= 7 396.8095238
STD= 6.80441 95.85855155  
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B.1.3 Loose Comparator 

From To Rank

Time (ms) to 
Rank 1,000 

Times
Thing Thing 1 250
Advisor Advisor 15 331
AFITform51 Form51 9 553
AFITform69 From69 11 272
AFITGradList GraduationList 5 301
Course Course 5 461
Database Database 1 245
Dean Dean 16 278
Department Department 1 362
DepartmentHead DepartmentHead 15 294
DeptCatalog DeptCatalog 9 375
DeptGradList GraduationList 6 301
Edplan edplan 5 454
Grade GradeList 1 292
GradProgram GradProgram 4 481
Instructor Instructor 14 293
QuarterCourseOffering CoursesOfferedList 7 328
Registrar Registrar 15 326
Requirements Requirements 5 286
Schedule ClassSchedule 3 294
Student Student 8 377

AVG= 7.428571 340.6666667
STD= 5.143651 82.66579301  
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B.1.4 Alphabetical 

From To Rank

Time (ms) to 
Rank 1,000 

Times
Thing Thing 25 30
Advisor Advisor 1 40
AFITform51 Form51 13 30
AFITform69 From69 14 30
AFITGradList GraduationList 19 30
Course Course 4 30
Database Database 6 40
Dean Dean 7 30
Department Department 8 30
DepartmentHead DepartmentHead 10 30
DeptCatalog DeptCatalog 9 30
DeptGradList GraduationList 13 30
Edplan edplan 19 30
Grade GradeList 15 30
GradProgram GradProgram 17 30
Instructor Instructor 20 30
QuarterCourseOffering CoursesOfferedList 5 30
Registrar Registrar 22 30
Requirements Requirements 23 30
Schedule ClassSchedule 2 30
Student Student 24 40

AVG= 13.14286 31.42857143
STD= 7.525196 3.585685828  

B.2 Mapping Smaller to Larger Ontologies 

This test involved mapping objects from the genealogy-based ontology [Hall 2001] to the general 

concept ontology [Hefflin 2000].  The following tables show the results using each of the versions of the 

ranking model. 
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B.2.1  Best-Value 

From To Rank

Time (ms) to 
Rank 1,000 

Times
Thing SHOEEntity 1 120
Person Person 1 1733
Individual Person 7 2483
PhysicalAddress Address 1 938
Family SocialGroup 2 752
Event Event 1 431

AVG= 2.166667 1076.166667
STD= 2.401388 879.2358993  

B.2.2 Strict Comparator 

From To Rank

Time (ms) to 
Rank 1,000 

Times
Thing SHOEEntity 1 210
Person Person 1 581
Individual Person 7 851
PhysicalAddress Address 1 310
Family SocialGroup 1 361
Event Event 1 260

AVG= 2 428.8333333
STD= 2.44949 243.5137915  

B.2.3 Loose Comparator 

From To Rank

Time (ms) to 
Rank 1,000 

Times
Thing SHOEEntity 1 185
Person Person 1 476
Individual Person 7 636
PhysicalAddress Address 1 285
Family SocialGroup 1 285
Event Event 1 245

AVG= 2 352
STD= 2.44949 169.9105647  
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B.2.4 Alphabetical 

From To Rank

Time (ms) to 
Rank 1,000 

Times
Thing SHOEEntity 22 36
Person Person 18 35
Individual Person 18 35
PhysicalAddress Address 2 35
Family SocialGroup 23 35
Event Event 10 36

AVG= 15.5 35.33333333
STD= 8.043631 0.516397779  
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